神经保护
莫里斯水上航行任务
氧化应激
医学
药理学
粒体自噬
行为绝望测验
索马里风
内分泌学
化学
海马体
抗抑郁药
病理
生物化学
自噬
替代医学
细胞凋亡
作者
Qiao Xiao,Huina Liu,Chao Yang,Yi Chen,Yue-Yue Huang,Xiaoxia Xiao,Ya‐Ru Pan,Jinyang He,Qun Du,Qi Wang,Yifan Zhang
标识
DOI:10.1016/j.jep.2023.116326
摘要
Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine (TCM) prescription widely used in treating mental retardation and neurodegenerative diseases with kidney deficiency, has been reported to attenuate oxidative stress-related neuronal apoptosis. Chronic cerebral hypoperfusion (CCH) is considered to be related to cognitive and emotional disorders. However, it remains to be clarified that the effect of BSYZ on CCH and its underlying mechanism.In the present study, we aimed to investigate the therapeutic effects and underlying mechanisms of BSYZ on CCH- injured rats based on the domination of oxidative stress balance and mitochondrial homeostasis through inhibiting abnormal excessive mitophagy.The in vivo rat model of CCH was established by bilateral common carotid artery occlusion (BCCAo), while the in vitro PC12 cell model was exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) condition, and a mitophagy inhibitor (chloroquine) by decreasing autophagosome-lysosome fusion was used as reverse validation in vitro. The protective role of BSYZ on CCH-injured rats was measured by open field test, morris water maze test, analysis of amyloid fibrils and apoptosis, and oxidative stress kit. The expression of mitochondria-related and mitophagy-related proteins was evaluated by Western blot, immunofluorescence, JC-1 staining assay and Mito-Tracker Red CMXRos assay. The components of BSYZ extracts were identified by HPLC-MS. The molecular docking studies were used to investigate the potential interactions of characteristic compounds in BSYZ with lysosomal membrane protein 1 (LAMP1).Our result indicated that BSYZ improved the cognition and memory abilities of the BCCAo rats by diminishing the occurrence of apoptosis and abnormal amyloid deposition accumulation, suppressing oxidative stress damage for abnormal excessive mitophagy activation in the hippocampus. Moreover, in OGD/R-damaged PC12 cells, BSYZ drug serum treatment substantially enhanced the PC12 cell viability and suppressed intracellular reactive oxygen species (ROS) accumulation for protecting against oxidative stress, along with the improvement of mitochondrial membrane activity and lysosomal proteins. Our studies also showed that inhibiting of autophagosome-lysosome fusion to generate autolysosomes by using chloroquine abrogated the neuroprotective effects of BSYZ on PC12 cells regarding the modulation of antioxidant defence and mitochondrial membrane activity. Furthermore, the molecular docking studies supported the direct bindings between lysosomal associated membrane protein 1 (LAMP1) and compounds in BSYZ extract to inhibit excessive mitophagy.Our study demonstrated that BSYZ played a neuroprotective role in rats with CCH and reduced neuronal oxidative stress via promoting the formation of autolysosomes to inhibit abnormal excessive mitophagy.
科研通智能强力驱动
Strongly Powered by AbleSci AI