Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model

胶质母细胞瘤 医学 机器学习 人工智能 计算机科学 癌症研究
作者
Yeseul Kim,Kyung Hwan Kim,Junyoung Park,Hong In Yoon,Wonmo Sung
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:183: 109617-109617 被引量:8
标识
DOI:10.1016/j.radonc.2023.109617
摘要

We aimed to develop a clinically applicable prognosis prediction model predicting overall survival (OS) and progression-free survival (PFS) for glioblastoma multiforme (GBM) patients.All 467 patients treated with concurrent chemoradiotherapy at Yonsei Cancer Center from 2016 to 2020 were included in this study. We developed a conventional linear regression, Cox proportional hazards (COX), and non-linear machine learning algorithms, random survival forest (RSF) and survival support vector machine (SVM) based on 16 clinical variables. After backward feature selection and hyperparameter tuning using grid search, we repeated 100 times of cross-validations to combat overfitting and enhance the model performance. Harrell's concordance index (C-index) and integrated brier score (IBS) were employed as quantitative performance metrics.In both predictions, RSF performed much better than COX and SVM. (For OS prediction: RSF C-index = 0.72 90%CI [0.71-0.72] and IBS = 0.12 90%CI [0.10-0.13]; For PFS prediction: RSF C-index = 0.70 90%CI [0.70-0.71] and IBS = 0.12 90%CI [0.10-0.14]). Permutation feature importance confirmed that MGMT promoter methylation, extent of resection, age, cone down planning target volume, and subventricular zone involvement are significant prognostic factors for OS. The importance of the extent of resection and MGMT promoter methylation was much higher than other selected input factors in PFS. Our final models accurately stratified two risk groups with root mean square errors less than 0.07. The sensitivity analysis revealed that our final models are highly applicable to newly diagnosed GBM patients.Our final models can provide a reliable outcome prediction for individual GBM. The final OS and PFS predicting models we developed accurately stratify high-risk groups up to 5-years, and the sensitivity analysis confirmed that both final models are clinically applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亓大大完成签到,获得积分10
2秒前
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得50
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
宁少爷应助科研通管家采纳,获得70
4秒前
4秒前
6秒前
拼搏老九发布了新的文献求助10
8秒前
领导范儿应助Liziuan采纳,获得10
9秒前
科研通AI2S应助可可萝oxo采纳,获得10
10秒前
不配.应助wen采纳,获得10
10秒前
风中绝悟完成签到,获得积分10
10秒前
野葱完成签到,获得积分10
11秒前
vv完成签到 ,获得积分10
13秒前
zzzzz完成签到,获得积分10
13秒前
13秒前
14秒前
我来回收数据完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
123发布了新的文献求助10
16秒前
阿弹完成签到,获得积分10
17秒前
打打应助Mayeleven采纳,获得10
17秒前
李君然完成签到,获得积分10
17秒前
Sue完成签到,获得积分10
18秒前
18秒前
安慕希发布了新的文献求助10
18秒前
一只黑麂发布了新的文献求助10
19秒前
23秒前
Sylvia完成签到,获得积分10
23秒前
24秒前
Jasper应助安慕希采纳,获得10
24秒前
我要发文章完成签到,获得积分10
25秒前
26秒前
因为完成签到 ,获得积分10
26秒前
lxrsee完成签到,获得积分10
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170097
求助须知:如何正确求助?哪些是违规求助? 2821387
关于积分的说明 7933584
捐赠科研通 2481570
什么是DOI,文献DOI怎么找? 1321908
科研通“疑难数据库(出版商)”最低求助积分说明 633434
版权声明 602579