Deep Learning-based Post Hoc CT Denoising for the Coronary Perivascular Fat Attenuation Index

医学 放射科 体素 接收机工作特性 磁共振成像 计算机断层血管造影 核医学 霍恩斯菲尔德秤 切断 计算机断层摄影术 内科学 量子力学 物理
作者
Tatsuya Nishii,Takuma Kobayashi,Tatsuya Saito,Akiyuki Kotoku,Yasutoshi Ohta,Satoshi Kitahara,Kensuke Umehara,Junko Ota,Hiroki Horinouchi,Yoshiaki Morita,Teruo Noguchi,Takayuki Ishida,Tetsuya Fukuda
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (11): 2505-2513 被引量:6
标识
DOI:10.1016/j.acra.2023.01.023
摘要

Coronary inflammation related to high-risk hemorrhagic plaques can be captured by the perivascular fat attenuation index (FAI) using coronary computed tomography angiography (CCTA). Since the FAI is susceptible to image noise, we believe deep learning (DL)-based post hoc noise reduction can improve diagnostic capability. We aimed to assess the diagnostic performance of the FAI in DL-based denoised high-fidelity CCTA images compared with coronary plaque magnetic resonance imaging (MRI) delivered high-intensity hemorrhagic plaques (HIPs).We retrospectively reviewed 43 patients who underwent CCTA and coronary plaque MRI. We generated high-fidelity CCTA images by denoising the standard CCTA images using a residual dense network that supervised the denoising task by averaging three cardiac phases with nonrigid registration. We measured the FAIs as the mean CT value of all voxels (range of -190 to -30 HU) located within a radial distance from the outer proximal right coronary artery wall. The diagnostic reference standard was defined as HIPs (high-risk hemorrhagic plaques) using MRI. The diagnostic performance of the FAI in the original and denoised images was assessed using receiver operating characteristic curves.Of 43 patients, 13 had HIPs. The denoised CCTA improved the area under the curve (0.89 [95% confidence interval (CI) 0.78-0.99]) of the FAI compared with that in the original image (0.77 [95% CI, 0.62-0.91], p = 0.008). The optimal cutoff value for predicting HIPs in denoised CCTA was -69 HU with 0.85 (11/13) sensitivity, 0.79 (25/30) specificity, and 0.80 (36/43) accuracy.DL-based denoised high-fidelity CCTA improved the AUC and specificity of the FAI for predicting HIPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心梦山完成签到,获得积分10
刚刚
LYY完成签到 ,获得积分10
2秒前
孙玉航发布了新的文献求助10
2秒前
2秒前
tuanheqi应助科研通管家采纳,获得100
3秒前
爱笑的汽车完成签到 ,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
学术大拿发布了新的文献求助10
3秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
yty完成签到,获得积分10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Rainsky完成签到,获得积分10
4秒前
所所应助科研通管家采纳,获得10
4秒前
lydiaabc发布了新的文献求助10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
tuanheqi应助科研通管家采纳,获得100
4秒前
Hello应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
充电宝应助林间清湖采纳,获得10
5秒前
6秒前
Caroline完成签到,获得积分10
6秒前
yty发布了新的文献求助10
6秒前
宋宋发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924605
求助须知:如何正确求助?哪些是违规求助? 4194681
关于积分的说明 13029309
捐赠科研通 3966484
什么是DOI,文献DOI怎么找? 2173998
邀请新用户注册赠送积分活动 1191530
关于科研通互助平台的介绍 1101034