Deep Learning-based Post Hoc CT Denoising for the Coronary Perivascular Fat Attenuation Index

医学 放射科 体素 接收机工作特性 磁共振成像 计算机断层血管造影 核医学 霍恩斯菲尔德秤 切断 计算机断层摄影术 内科学 量子力学 物理
作者
Tatsuya Nishii,Takuma Kobayashi,Tatsuya Saito,Akiyuki Kotoku,Yasutoshi Ohta,Satoshi Kitahara,Kensuke Umehara,Junko Ota,Hiroki Horinouchi,Yoshiaki Morita,Teruo Noguchi,Takayuki Ishida,Tetsuya Fukuda
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (11): 2505-2513 被引量:3
标识
DOI:10.1016/j.acra.2023.01.023
摘要

Coronary inflammation related to high-risk hemorrhagic plaques can be captured by the perivascular fat attenuation index (FAI) using coronary computed tomography angiography (CCTA). Since the FAI is susceptible to image noise, we believe deep learning (DL)-based post hoc noise reduction can improve diagnostic capability. We aimed to assess the diagnostic performance of the FAI in DL-based denoised high-fidelity CCTA images compared with coronary plaque magnetic resonance imaging (MRI) delivered high-intensity hemorrhagic plaques (HIPs).We retrospectively reviewed 43 patients who underwent CCTA and coronary plaque MRI. We generated high-fidelity CCTA images by denoising the standard CCTA images using a residual dense network that supervised the denoising task by averaging three cardiac phases with nonrigid registration. We measured the FAIs as the mean CT value of all voxels (range of -190 to -30 HU) located within a radial distance from the outer proximal right coronary artery wall. The diagnostic reference standard was defined as HIPs (high-risk hemorrhagic plaques) using MRI. The diagnostic performance of the FAI in the original and denoised images was assessed using receiver operating characteristic curves.Of 43 patients, 13 had HIPs. The denoised CCTA improved the area under the curve (0.89 [95% confidence interval (CI) 0.78-0.99]) of the FAI compared with that in the original image (0.77 [95% CI, 0.62-0.91], p = 0.008). The optimal cutoff value for predicting HIPs in denoised CCTA was -69 HU with 0.85 (11/13) sensitivity, 0.79 (25/30) specificity, and 0.80 (36/43) accuracy.DL-based denoised high-fidelity CCTA improved the AUC and specificity of the FAI for predicting HIPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wary发布了新的文献求助10
刚刚
Genius完成签到,获得积分10
刚刚
张掖发布了新的文献求助10
2秒前
金虎完成签到,获得积分10
2秒前
小董不懂完成签到,获得积分10
2秒前
大晨发布了新的文献求助10
2秒前
斯文败类应助Liu采纳,获得10
3秒前
李爱国应助脆弱的仙人掌采纳,获得10
4秒前
打打应助张自信采纳,获得10
4秒前
4秒前
虚幻羊发布了新的文献求助10
5秒前
沙拉发布了新的文献求助10
5秒前
iNk应助陈淑玲采纳,获得10
5秒前
科研通AI2S应助BWZ采纳,获得10
5秒前
5秒前
6秒前
Ade完成签到,获得积分10
7秒前
7秒前
lx840518发布了新的文献求助10
7秒前
兴奋大开完成签到,获得积分10
8秒前
虚幻羊完成签到,获得积分20
8秒前
Meng完成签到,获得积分10
9秒前
张掖完成签到,获得积分10
9秒前
Lucas应助kangkang采纳,获得10
10秒前
大晨完成签到,获得积分10
10秒前
哈哈哈haha发布了新的文献求助20
11秒前
cc发布了新的文献求助10
11秒前
Yolo发布了新的文献求助10
11秒前
11秒前
allenice完成签到,获得积分10
11秒前
12秒前
12秒前
音乐发布了新的文献求助10
12秒前
英姑应助科研通管家采纳,获得10
13秒前
华仔应助沙拉采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762