已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-based Post Hoc CT Denoising for the Coronary Perivascular Fat Attenuation Index

医学 放射科 体素 接收机工作特性 磁共振成像 计算机断层血管造影 核医学 霍恩斯菲尔德秤 切断 计算机断层摄影术 内科学 量子力学 物理
作者
Tatsuya Nishii,Takuma Kobayashi,Tatsuya Saito,Akiyuki Kotoku,Yasutoshi Ohta,Satoshi Kitahara,Kensuke Umehara,Junko Ota,Hiroki Horinouchi,Yoshiaki Morita,Teruo Noguchi,Takayuki Ishida,Tetsuya Fukuda
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (11): 2505-2513 被引量:6
标识
DOI:10.1016/j.acra.2023.01.023
摘要

Coronary inflammation related to high-risk hemorrhagic plaques can be captured by the perivascular fat attenuation index (FAI) using coronary computed tomography angiography (CCTA). Since the FAI is susceptible to image noise, we believe deep learning (DL)-based post hoc noise reduction can improve diagnostic capability. We aimed to assess the diagnostic performance of the FAI in DL-based denoised high-fidelity CCTA images compared with coronary plaque magnetic resonance imaging (MRI) delivered high-intensity hemorrhagic plaques (HIPs).We retrospectively reviewed 43 patients who underwent CCTA and coronary plaque MRI. We generated high-fidelity CCTA images by denoising the standard CCTA images using a residual dense network that supervised the denoising task by averaging three cardiac phases with nonrigid registration. We measured the FAIs as the mean CT value of all voxels (range of -190 to -30 HU) located within a radial distance from the outer proximal right coronary artery wall. The diagnostic reference standard was defined as HIPs (high-risk hemorrhagic plaques) using MRI. The diagnostic performance of the FAI in the original and denoised images was assessed using receiver operating characteristic curves.Of 43 patients, 13 had HIPs. The denoised CCTA improved the area under the curve (0.89 [95% confidence interval (CI) 0.78-0.99]) of the FAI compared with that in the original image (0.77 [95% CI, 0.62-0.91], p = 0.008). The optimal cutoff value for predicting HIPs in denoised CCTA was -69 HU with 0.85 (11/13) sensitivity, 0.79 (25/30) specificity, and 0.80 (36/43) accuracy.DL-based denoised high-fidelity CCTA improved the AUC and specificity of the FAI for predicting HIPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率依玉发布了新的文献求助10
3秒前
永毅完成签到 ,获得积分10
3秒前
achilles完成签到,获得积分10
4秒前
蓝桉完成签到 ,获得积分10
6秒前
11秒前
13秒前
婷123发布了新的文献求助10
15秒前
16秒前
17秒前
YAYING完成签到 ,获得积分10
18秒前
桑格利亚完成签到 ,获得积分10
18秒前
18秒前
19秒前
久久丫完成签到 ,获得积分10
19秒前
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
20秒前
大模型应助PAIDAXXXX采纳,获得10
22秒前
lqj发布了新的文献求助10
25秒前
27秒前
29秒前
yanyan完成签到,获得积分10
31秒前
2720完成签到,获得积分20
31秒前
31秒前
32秒前
坦率依玉完成签到,获得积分10
32秒前
uery完成签到,获得积分10
37秒前
tjnksy完成签到,获得积分10
38秒前
感动的雁枫完成签到,获得积分10
43秒前
44秒前
花花发布了新的文献求助10
47秒前
48秒前
PAIDAXXXX发布了新的文献求助10
48秒前
50秒前
52秒前
Roy007完成签到,获得积分10
53秒前
Sulfur发布了新的文献求助10
54秒前
科研废柴发布了新的文献求助10
54秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870534
求助须知:如何正确求助?哪些是违规求助? 6463278
关于积分的说明 15664266
捐赠科研通 4986619
什么是DOI,文献DOI怎么找? 2688914
邀请新用户注册赠送积分活动 1631289
关于科研通互助平台的介绍 1589336