AI differentiates radionecrosis from true progression in brain metastasis upon stereotactic radiosurgery: analysis of 124 histologically assessed lesions

放射外科 医学 流体衰减反转恢复 脑转移 放射科 单变量分析 多元分析 磁共振成像 转移 癌症 放射治疗 内科学
作者
Gaia Ressa,Riccardo Levi,Giovanni Savini,Gaia Ressa,Elena Clerici,Elena Clerici,L.A. Cappellini,Marco Grimaldi,Saverio Pancetti,Beatrice Bono,Andrea Franzini,Marco Riva,Bethania Fernandez,Maximilian Niyazi,Federico Pessina,Giuseppe Minniti,Pierina Navarria,Marta Scorsetti,Letterio S. Politi
出处
期刊:Neuro-oncology [Oxford University Press]
标识
DOI:10.1093/neuonc/noaf090
摘要

Abstract Background Differentiating radionecrosis from neoplastic progression after stereotactic radiosurgery (SRS) for brain metastases is a diagnostic challenge. Previous studies have often been limited by datasets lacking histologically confirmed diagnoses. This study aimed to develop automated models for distinguishing radionecrosis from disease progression on brain MRI, utilizing cases with definitive histopathological confirmation. Methods This multi-center retrospective study included patients who underwent surgical resection for suspected brain metastasis progression after SRS. Presurgical FLAIR and post-contrast T1 (T1w-ce) were segmented using a convolutional neural network (CNN) and compared with manual segmentation by means of Dice score. Radiomics features were extracted from each lesion, and a Random Forest model was trained on 70% of the internal dataset and evaluated on the remaining 30% and the complete external dataset. A 3DResNet-CNN was trained on the same split dataset. Validation was performed on the external dataset. Post-surgical histology was available for all cases. Results 124 brain metastases were included (104 from center 1 and 20 from center 2). Sole radionecrosis was histologically detected in 34 cases (27.4%). In the internal dataset, univariate and multivariate analysis identified 131 significantly different radiomics features, including GLDM_DNUN and GLDM_SDE within the enhancing area on the T1w-ce. On the external test dataset, the Random Forest model and the 3DResNet-CNN yielded accurate results in terms of accuracy (80.0%, 85.0%), AUROC (0.830, 0.893) and sensitivity (92.8%, 100%) in radionecrosis prediction, respectively. Conclusion Artificial intelligence could be employed to differentiate between radionecrosis and brain metastasis progression upon SRS, potentially reducing unnecessary surgical interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐正怡完成签到 ,获得积分10
1秒前
坚强的铅笔完成签到 ,获得积分10
2秒前
2秒前
俊俊发布了新的文献求助10
7秒前
ZeroL完成签到 ,获得积分0
8秒前
烟雨完成签到,获得积分10
10秒前
布吉岛呀完成签到 ,获得积分10
12秒前
mufulee完成签到,获得积分10
16秒前
酷酷小子完成签到 ,获得积分10
23秒前
阿怪完成签到 ,获得积分10
23秒前
老张完成签到 ,获得积分10
32秒前
谨慎鹏涛完成签到 ,获得积分10
34秒前
沙子完成签到 ,获得积分10
38秒前
54秒前
59秒前
鲤鱼发布了新的文献求助10
1分钟前
xiaowuge完成签到 ,获得积分10
1分钟前
naomi完成签到 ,获得积分10
1分钟前
执着绿草完成签到 ,获得积分10
1分钟前
1分钟前
相爱就永远在一起完成签到,获得积分10
1分钟前
李新光完成签到 ,获得积分10
1分钟前
Sue完成签到 ,获得积分10
1分钟前
提莫silence完成签到 ,获得积分10
1分钟前
DOUBLE完成签到,获得积分10
1分钟前
可飞完成签到,获得积分10
1分钟前
liguanyu1078完成签到,获得积分10
1分钟前
最美夕阳红完成签到,获得积分10
1分钟前
Sean完成签到 ,获得积分10
1分钟前
怡然白竹完成签到 ,获得积分10
1分钟前
青衫完成签到 ,获得积分10
1分钟前
睡觉王完成签到 ,获得积分10
1分钟前
正直的松鼠完成签到 ,获得积分10
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
joeqin完成签到,获得积分10
1分钟前
wenbinvan完成签到,获得积分0
2分钟前
2分钟前
orange完成签到 ,获得积分10
2分钟前
大猪完成签到 ,获得积分10
2分钟前
来栖完成签到 ,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
江岸区志(下卷) 800
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Global Higher Education Practices in Times of Crisis: Questions for Sustainability and Digitalization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695154
求助须知:如何正确求助?哪些是违规求助? 3246674
关于积分的说明 9850580
捐赠科研通 2958259
什么是DOI,文献DOI怎么找? 1622050
邀请新用户注册赠送积分活动 767731
科研通“疑难数据库(出版商)”最低求助积分说明 741256