IRPCA: An Interpretable Robust Principal Component Analysis Framework for Inferring miRNA–Drug Associations

主成分分析 稳健主成分分析 计算生物学 组分(热力学) 药品 计算机科学 数据挖掘 人工智能 生物 药理学 热力学 物理
作者
Yunyin Li,Shudong Wang,Yuanyuan Zhang,Chuanru Ren,Tiyao Liu,Yingye Liu,Shanchen Pang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.jcim.4c02385
摘要

Recent evidence indicates that microribonucleic acids (miRNAs) are crucial in modulating drug sensitivity by orchestrating the expression of genes involved in drug metabolism and its pharmacological effects. Existing predictive methods struggle to extract features related to miRNAs and drugs, often overlooking the significance of data noise and the limitations of using a single similarity measure. To address these limitations, we propose an interpretable robust principal component analysis framework (IRPCA). IRPCA enhances the robustness of the model by employing a nonconvex low-rank approximation, thereby offering greater flexibility. Interpretability is ensured by analyzing low-rank matrix decomposition, which clarifies how miRNAs interact with drugs. Gaussian interaction profile kernel (GIPK) similarities are introduced to compute integrated similarities between miRNAs and drugs, addressing the issue of the single similarity feature. IRPCA is subsequently utilized to extract pertinent features, and a fully connected neural network is employed to generate the ultimate prediction scores. To assess the efficacy of IRPCA, we implemented 5-fold cross-validation (CV), which outperformed other leading methods, achieving the highest area under the curve (AUC) value of 0.9653. Additionally, case studies provide additional evidence supporting the efficacy of IRPCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
鲜艳的沛春完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助30
1秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
专注的问寒应助小猫宝采纳,获得50
4秒前
4秒前
zxd发布了新的文献求助10
4秒前
离离发布了新的文献求助10
5秒前
Orange应助不爱看文献采纳,获得10
5秒前
一米阳光发布了新的文献求助10
6秒前
世安完成签到,获得积分10
7秒前
7秒前
zzz发布了新的文献求助10
8秒前
丝绒发布了新的文献求助10
8秒前
无情的函发布了新的文献求助10
9秒前
dm发布了新的文献求助10
11秒前
11秒前
11秒前
berg发布了新的文献求助10
11秒前
11秒前
11秒前
guo完成签到,获得积分10
12秒前
英俊的铭应助丝绒采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
乐空思应助ctomit采纳,获得30
13秒前
zzz完成签到,获得积分10
14秒前
14秒前
超浓抹茶椰完成签到,获得积分10
15秒前
DWWWDAADAD完成签到,获得积分10
15秒前
今后应助王富贵采纳,获得10
16秒前
zoerist应助科研通管家采纳,获得10
16秒前
spc68应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718285
求助须知:如何正确求助?哪些是违规求助? 5251746
关于积分的说明 15285174
捐赠科研通 4868514
什么是DOI,文献DOI怎么找? 2614220
邀请新用户注册赠送积分活动 1564054
关于科研通互助平台的介绍 1521548