IRPCA: An Interpretable Robust Principal Component Analysis Framework for Inferring miRNA–Drug Associations

主成分分析 稳健主成分分析 计算生物学 组分(热力学) 药品 计算机科学 数据挖掘 人工智能 生物 药理学 热力学 物理
作者
Yunyin Li,Shudong Wang,Yuanyuan Zhang,Chuanru Ren,Tiyao Liu,Yingye Liu,Shanchen Pang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.jcim.4c02385
摘要

Recent evidence indicates that microribonucleic acids (miRNAs) are crucial in modulating drug sensitivity by orchestrating the expression of genes involved in drug metabolism and its pharmacological effects. Existing predictive methods struggle to extract features related to miRNAs and drugs, often overlooking the significance of data noise and the limitations of using a single similarity measure. To address these limitations, we propose an interpretable robust principal component analysis framework (IRPCA). IRPCA enhances the robustness of the model by employing a nonconvex low-rank approximation, thereby offering greater flexibility. Interpretability is ensured by analyzing low-rank matrix decomposition, which clarifies how miRNAs interact with drugs. Gaussian interaction profile kernel (GIPK) similarities are introduced to compute integrated similarities between miRNAs and drugs, addressing the issue of the single similarity feature. IRPCA is subsequently utilized to extract pertinent features, and a fully connected neural network is employed to generate the ultimate prediction scores. To assess the efficacy of IRPCA, we implemented 5-fold cross-validation (CV), which outperformed other leading methods, achieving the highest area under the curve (AUC) value of 0.9653. Additionally, case studies provide additional evidence supporting the efficacy of IRPCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助激昂的蜻蜓采纳,获得10
1秒前
顾矜应助王超采纳,获得10
1秒前
小鱼干完成签到,获得积分10
1秒前
1秒前
竹竹发布了新的文献求助20
1秒前
大大小小发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
asdfzxcv应助cc采纳,获得10
2秒前
asdfzxcv应助迅速的寻绿采纳,获得10
3秒前
Twonej应助F-超哥采纳,获得30
3秒前
4秒前
yuna_yqc完成签到,获得积分10
4秒前
叶公子发布了新的文献求助10
4秒前
cc0514gr完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
大白发布了新的文献求助10
7秒前
CodeCraft应助Rando采纳,获得10
7秒前
香蕉觅云应助危机的菠萝采纳,获得10
7秒前
科研通AI6应助李_Steven采纳,获得30
7秒前
科研通AI6应助李_Steven采纳,获得10
7秒前
科研通AI6应助李_Steven采纳,获得10
7秒前
Owen应助李_Steven采纳,获得10
7秒前
万能图书馆应助李_Steven采纳,获得10
7秒前
7秒前
7秒前
烟花应助李_Steven采纳,获得10
7秒前
小二郎应助李_Steven采纳,获得10
7秒前
小二郎应助李_Steven采纳,获得10
8秒前
搜集达人应助李_Steven采纳,获得10
8秒前
Lemon完成签到 ,获得积分10
8秒前
努力退休小博士完成签到 ,获得积分10
9秒前
梅莉达完成签到,获得积分10
9秒前
Ywffffff发布了新的文献求助10
10秒前
Colin_Chen发布了新的文献求助10
10秒前
祈祈完成签到 ,获得积分10
10秒前
10秒前
研友_ngKyqn完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596