IRPCA: An Interpretable Robust Principal Component Analysis Framework for Inferring miRNA–Drug Associations

主成分分析 稳健主成分分析 计算生物学 组分(热力学) 药品 计算机科学 数据挖掘 人工智能 生物 药理学 热力学 物理
作者
Yunyin Li,Shudong Wang,Yuanyuan Zhang,Chuanru Ren,Tiyao Liu,Yingye Liu,Shanchen Pang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.jcim.4c02385
摘要

Recent evidence indicates that microribonucleic acids (miRNAs) are crucial in modulating drug sensitivity by orchestrating the expression of genes involved in drug metabolism and its pharmacological effects. Existing predictive methods struggle to extract features related to miRNAs and drugs, often overlooking the significance of data noise and the limitations of using a single similarity measure. To address these limitations, we propose an interpretable robust principal component analysis framework (IRPCA). IRPCA enhances the robustness of the model by employing a nonconvex low-rank approximation, thereby offering greater flexibility. Interpretability is ensured by analyzing low-rank matrix decomposition, which clarifies how miRNAs interact with drugs. Gaussian interaction profile kernel (GIPK) similarities are introduced to compute integrated similarities between miRNAs and drugs, addressing the issue of the single similarity feature. IRPCA is subsequently utilized to extract pertinent features, and a fully connected neural network is employed to generate the ultimate prediction scores. To assess the efficacy of IRPCA, we implemented 5-fold cross-validation (CV), which outperformed other leading methods, achieving the highest area under the curve (AUC) value of 0.9653. Additionally, case studies provide additional evidence supporting the efficacy of IRPCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张爱科研完成签到,获得积分10
1秒前
1秒前
天天快乐应助西西歪采纳,获得10
1秒前
逗逗发布了新的文献求助10
1秒前
1秒前
英姑应助天天小女孩采纳,获得10
1秒前
Kaysen92发布了新的文献求助10
2秒前
鹅鹅大王发布了新的文献求助10
2秒前
zy完成签到,获得积分10
3秒前
eden完成签到,获得积分10
4秒前
TIAN完成签到,获得积分20
4秒前
5秒前
6秒前
6秒前
一吃就饱完成签到,获得积分10
7秒前
老实紫萱完成签到,获得积分20
7秒前
传奇3应助默默百招采纳,获得10
8秒前
Kaysen92完成签到,获得积分10
9秒前
HamzaAnsari完成签到,获得积分10
9秒前
franklylyly完成签到,获得积分10
10秒前
11秒前
12秒前
鹅鹅大王完成签到,获得积分10
12秒前
猫一盒发布了新的文献求助10
13秒前
是小天呀发布了新的文献求助10
13秒前
打打应助xiaosu采纳,获得30
13秒前
14秒前
逃之姚姚完成签到 ,获得积分10
15秒前
15秒前
小火孩完成签到,获得积分10
18秒前
斯文败类应助Rikki采纳,获得10
18秒前
18秒前
18秒前
正己化人应助Ray采纳,获得10
20秒前
21秒前
顺心从安发布了新的文献求助10
21秒前
登山人完成签到,获得积分10
21秒前
赛因斯完成签到,获得积分10
22秒前
Jared应助苗龙伟采纳,获得10
23秒前
DDDD发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569592
求助须知:如何正确求助?哪些是违规求助? 4654253
关于积分的说明 14710045
捐赠科研通 4595902
什么是DOI,文献DOI怎么找? 2522102
邀请新用户注册赠送积分活动 1493376
关于科研通互助平台的介绍 1463987