IRPCA: An Interpretable Robust Principal Component Analysis Framework for Inferring miRNA–Drug Associations

主成分分析 稳健主成分分析 计算生物学 组分(热力学) 药品 计算机科学 数据挖掘 人工智能 生物 药理学 热力学 物理
作者
Yunyin Li,Shudong Wang,Yuanyuan Zhang,Chuanru Ren,Tiyao Liu,Yingye Liu,Shanchen Pang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.jcim.4c02385
摘要

Recent evidence indicates that microribonucleic acids (miRNAs) are crucial in modulating drug sensitivity by orchestrating the expression of genes involved in drug metabolism and its pharmacological effects. Existing predictive methods struggle to extract features related to miRNAs and drugs, often overlooking the significance of data noise and the limitations of using a single similarity measure. To address these limitations, we propose an interpretable robust principal component analysis framework (IRPCA). IRPCA enhances the robustness of the model by employing a nonconvex low-rank approximation, thereby offering greater flexibility. Interpretability is ensured by analyzing low-rank matrix decomposition, which clarifies how miRNAs interact with drugs. Gaussian interaction profile kernel (GIPK) similarities are introduced to compute integrated similarities between miRNAs and drugs, addressing the issue of the single similarity feature. IRPCA is subsequently utilized to extract pertinent features, and a fully connected neural network is employed to generate the ultimate prediction scores. To assess the efficacy of IRPCA, we implemented 5-fold cross-validation (CV), which outperformed other leading methods, achieving the highest area under the curve (AUC) value of 0.9653. Additionally, case studies provide additional evidence supporting the efficacy of IRPCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZBH发布了新的文献求助10
刚刚
搜集达人应助咕噜噜采纳,获得10
刚刚
1秒前
无奈凡波应助来不及丨采纳,获得10
1秒前
一枚研究僧完成签到,获得积分0
2秒前
2秒前
疯了半天完成签到,获得积分10
2秒前
勤劳雁应助科研通管家采纳,获得10
2秒前
充电宝应助snowman采纳,获得10
2秒前
坦率的匪应助科研通管家采纳,获得20
2秒前
冰封火种发布了新的文献求助30
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
桐桐应助marson采纳,获得10
2秒前
sunchem完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
万能图书馆应助long198546采纳,获得10
3秒前
平心定气完成签到 ,获得积分10
3秒前
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Potter完成签到,获得积分10
3秒前
大个应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
科研通AI6应助XXXXX采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
领导范儿应助萌萌采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
xiuxiu发布了新的文献求助20
4秒前
hhhh_xt完成签到,获得积分10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
kingwill应助曾经翎采纳,获得20
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
xuxuxuxuxu发布了新的文献求助10
4秒前
在水一方应助可靠之玉采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得20
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723