SUMMARY Rice tillering determines grain yield, yet the molecular regulatory network is still limited. In this study, we demonstrated that the transcription factor OsMADS60 promotes the expression of the auxin transporter OsPIN5b to affect auxin distribution and inhibit rice tillering and grain yield. Natural variation was observed in the promoter region of OsMADS60 , with its expression level negatively correlated with tiller number and inducible by auxin. Overexpression of OsMADS60 resulted in reduced tillers and grain yield, whereas CRISPR‐mediated knockouts of OsMADS60 led to increased tillering and yield. OsMADS60 was found to directly bind the CArG motif [CATTTAC] in the OsPIN5b promoter, thereby upregulating its expression. Moreover, we found that auxin content in various tissues of OsMADS60 and OsPIN5b overexpression lines increased relative to the wild‐type ZH11, whereas the auxin levels in mutant lines showed the opposite trend. Genetic analysis further confirmed that OsPIN5b acted downstream of OsMADS60 , coregulating the expression of genes involved in hormone pathways. Our findings reveal that OsMADS60 modulates auxin distribution by promoting OsPIN5b expression, thereby influencing rice tillering. This regulatory mechanism holds significant potential for the genetic improvement of rice architecture and grain yield.