Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy

无线电技术 医学 食管鳞状细胞癌 免疫疗法 化疗 新辅助治疗 完全响应 肿瘤科 基底细胞 内科学 病理 放射科 癌症 乳腺癌
作者
Zhen Zhang,Tianchen Luo,Yan Meng,Haixia Shen,Kaiyi Tao,Jian Zeng,Jingping Yuan,Min Fang,Jianming Zheng,Iñigo Bermejo,André Dekker,Dirk De Ruysscher,Leonard Wee,Wencheng Zhang,Youhua Jiang,Yongling Ji
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:13 (3): e011149-e011149
标识
DOI:10.1136/jitc-2024-011149
摘要

Background Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develop and validate a deep learning model using a novel voxel-level radiomics approach to predict pCR based on preoperative CT images. Methods In this multicenter, retrospective study, 741 patients with ESCC who underwent nICT followed by radical esophagectomy were enrolled from three institutions. Patients from one center were divided into a training set (469 patients) and an internal validation set (118 patients) while the data from the other two centers was used as external validation sets (120 and 34 patients, respectively). The deep learning model, Vision-Mamba, integrated voxel-level radiomics feature maps and CT images for pCR prediction. Additionally, other commonly used deep learning models, including 3D-ResNet and Vision Transformer, as well as traditional radiomics methods, were developed for comparison. Model performance was evaluated using accuracy, area under the curve (AUC), sensitivity, specificity, and prognostic stratification capabilities. The SHapley Additive exPlanations analysis was employed to interpret the model’s predictions. Results The Vision-Mamba model demonstrated robust predictive performance in the training set (accuracy: 0.89, AUC: 0.91, sensitivity: 0.82, specificity: 0.92) and validation sets (accuracy: 0.83–0.91, AUC: 0.83–0.92, sensitivity: 0.73–0.94, specificity: 0.84–1.0). The model outperformed other deep learning models and traditional radiomics methods. The model’s ability to stratify patients into high and low-risk groups was validated, showing superior prognostic stratification compared with traditional methods. SHAP provided quantitative and visual model interpretation. Conclusions We present a voxel-level radiomics-based deep learning model to predict pCR to neoadjuvant immunotherapy combined with chemotherapy based on pretreatment diagnostic CT images with high accuracy and robustness. This model could provide a promising tool for individualized management of patients with ESCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是白鸽啊完成签到 ,获得积分10
1秒前
科研通AI5应助静一会采纳,获得10
2秒前
答辩科学家完成签到,获得积分10
2秒前
领导范儿应助Rainbow采纳,获得10
3秒前
科研人员完成签到 ,获得积分10
4秒前
dearyman完成签到,获得积分10
4秒前
5秒前
哭泣的缘郡完成签到 ,获得积分10
6秒前
你倒是发啊完成签到,获得积分10
7秒前
感动归尘完成签到,获得积分10
8秒前
didilucky完成签到,获得积分10
9秒前
kxdxng完成签到 ,获得积分10
9秒前
橙子爱吃火龙果完成签到 ,获得积分10
9秒前
静一会完成签到,获得积分10
10秒前
10秒前
静一会发布了新的文献求助10
16秒前
qwns完成签到 ,获得积分10
16秒前
wp2002完成签到 ,获得积分10
16秒前
18秒前
柠檬完成签到,获得积分10
19秒前
燕子完成签到,获得积分10
21秒前
忐忑的草丛完成签到,获得积分10
24秒前
善良的火完成签到 ,获得积分10
25秒前
marvin发布了新的文献求助10
25秒前
念姬完成签到 ,获得积分10
25秒前
chi完成签到 ,获得积分10
31秒前
淡淡的小蘑菇完成签到 ,获得积分10
31秒前
31秒前
健忘数据线完成签到 ,获得积分10
31秒前
小马甲应助随风采纳,获得10
32秒前
tomf完成签到,获得积分10
32秒前
Wang完成签到 ,获得积分10
34秒前
韭黄发布了新的文献求助10
35秒前
huangdq6完成签到 ,获得积分10
36秒前
changfox完成签到,获得积分10
36秒前
我独舞完成签到 ,获得积分10
37秒前
与离完成签到 ,获得积分10
40秒前
Xzmmmm完成签到,获得积分10
41秒前
momo完成签到,获得积分10
41秒前
oyfff完成签到 ,获得积分10
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580488
求助须知:如何正确求助?哪些是违规求助? 3150008
关于积分的说明 9479682
捐赠科研通 2851531
什么是DOI,文献DOI怎么找? 1567864
邀请新用户注册赠送积分活动 734254
科研通“疑难数据库(出版商)”最低求助积分说明 720579