Assay-Based Machine Learning: Rethinking Evaluation in Drug Discovery

药物发现 计算机科学 药品 机器学习 人工智能 数据科学 药理学 医学 生物信息学 生物
作者
Michael Backenköhler,Joschka Groß,Andrea Volkamer
标识
DOI:10.26434/chemrxiv-2025-zsk6d
摘要

The effectiveness of machine learning (ML) in drug discovery hinges on evaluation and modeling approaches that align with how compounds are tested and compared in real experimental contexts. We observe that experimental data in public repositories like ChEMBL naturally clusters by assay origin, while retaining significant overlap between training and test sets even when using common splitting strategies. This clustering effect is notable as simply predicting the mean activity value from a training assay yields surprisingly strong performance on test compounds from the same assay. To address these observations, we propose a paradigm for ML in drug discovery that respects the inherent structure of aggregated experimental data. We implement this approach through: (1) data splitting that allocates entire assays to either training or test sets, (2) evaluation metrics that assess ranking performance within individual assays rather than absolute prediction accuracy across heterogeneous experiments, and (3) set-based ranking models trained specifically on compound sets drawn from the same assay rather than random sets. Evaluating our approach on three datasets derived from ChEMBL, we demonstrate that ranking models trained on intra-assay sets consistently outperform both traditional IC50 prediction and ranking models trained on arbitrary compound sets. This performance advantage is most pronounced when data is curated minimally, suggesting that our approach effectively mitigates inconsistencies between experiments. Our findings indicate that ML methods for drug discovery should prioritize intra-assay ranking capability over absolute value prediction when working with aggregated experimental data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zx完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
悠悠发布了新的文献求助30
7秒前
王十二完成签到,获得积分10
7秒前
xde145完成签到,获得积分10
8秒前
pioneer发布了新的文献求助50
8秒前
火火完成签到,获得积分10
8秒前
ding应助zimo采纳,获得10
9秒前
NexusExplorer应助大西瓜采纳,获得10
9秒前
ohenry发布了新的文献求助10
9秒前
10秒前
螳螂腿子发布了新的文献求助10
11秒前
11秒前
子暮完成签到,获得积分10
11秒前
12秒前
香蕉觅云应助zhizhimama采纳,获得10
12秒前
13秒前
14秒前
15秒前
15秒前
15秒前
Hello应助不散的和弦采纳,获得30
16秒前
螳螂腿子完成签到,获得积分10
16秒前
17秒前
白小西完成签到,获得积分10
17秒前
万能图书馆应助沐子采纳,获得10
17秒前
义气笑容发布了新的文献求助10
17秒前
19秒前
科研通AI5应助子暮采纳,获得10
19秒前
科研通AI5应助姚芭蕉采纳,获得10
19秒前
帽子发布了新的文献求助10
19秒前
丘比特应助莲枳榴莲采纳,获得10
20秒前
1234645678发布了新的文献求助10
20秒前
momo发布了新的文献求助10
21秒前
777发布了新的文献求助10
21秒前
JamesPei应助复杂的夜蓉采纳,获得10
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775221
求助须知:如何正确求助?哪些是违规求助? 3320863
关于积分的说明 10202435
捐赠科研通 3035730
什么是DOI,文献DOI怎么找? 1665682
邀请新用户注册赠送积分活动 797102
科研通“疑难数据库(出版商)”最低求助积分说明 757700