报销
质量(理念)
胃肠道出血
质量管理
医学
业务
运营管理
内科学
管理制度
工程类
医疗保健
经济
哲学
认识论
经济增长
作者
Neil S. Zheng,Vipina K. Keloth,Kisung You,Daniel Kats,Darrick K. Li,Ohm Deshpande,Hamita Sachar,Hua Xu,Loren Laine,Dennis Shung
标识
DOI:10.1053/j.gastro.2024.09.014
摘要
Early identification and accurate characterization of overt gastrointestinal bleeding (GIB) enables opportunities to optimize patient management and ensures appropriately risk-adjusted coding for claims-based quality measures and reimbursement. Recent advancements in generative artificial intelligence, particularly large language models (LLMs), create opportunities to support accurate identification of clinical conditions. In this study, we present the first LLM-based pipeline for identification of overt GIB in the electronic health record (EHR). We demonstrate two clinically relevant applications: the automated detection of recurrent bleeding and appropriate reimbursement coding for patients with GIB.
科研通智能强力驱动
Strongly Powered by AbleSci AI