基因敲除
TRPC3型
细胞生物学
细胞迁移
焦点粘着
癌症研究
生物
化学
细胞培养
分子生物学
信号转导
瞬时受体电位通道
受体
生物化学
TRPC公司
遗传学
作者
Sheng Wang,Xiaosheng Zhuang,Yanxiang Qi,L. Y. Yiu,Zhenping Li,Yuk Wah Chan,Xianji Liu,Suk Ying Tsang
标识
DOI:10.1007/s00424-024-03030-y
摘要
Abstract Canonical transient receptor potential isoform 3 (TRPC3), a calcium-permeable non-selective cation channel, has been reported to be upregulated in breast cancers and a modulator of cell migration. Calcium-sensitive transcription factor NFATc1, which is important for cell migration, was shown to be frequently activated in triple negative breast cancer (TNBC) biopsy tissues. However, whether TRPC3-mediated calcium influx would activate NFATc1 and affect the migration of TNBC cells, and, if yes, the underlying mechanisms involved, remain to be investigated. By immunostaining followed by confocal microscopy, TNBC lines MDA-MB-231 and BT-549 were both found to express TRPC3 on their plasma membrane while ER + line MCF-7 and HER2 + line SK-BR3 do not. Blockade of TRPC3 by pharmacological inhibitor Pyr3 or stable knockdown of TRPC3 by lentiviral vector both inhibited cell migration as measured by wound healing assay. Importantly, blocking TRPC3 by Pyr3 or knockdown of TRPC3 both caused the translocation of NFATc1 from the nucleus to the cytosol as revealed by confocal microscopy. Interestingly, NFATc1 was found to bind to the promoter of glypican 6 (GPC6) as determined by chromatin immunoprecipitation assay. Consistently, knockdown of TRPC3 decreased the expression of GPC6 as revealed by western blotting. Moreover, long-term knockdown of GPC6 by lentiviral vector also consistently decreased the migration of TNBC cells. Intriguingly, GPC6 proteins physically interact with vinculin in MDA-MB-231 as determined by co-immunoprecipitation. Blockade of TRPC3, knockdown of TRPC3 or knockdown of GPC6 all induced larger, stabilized actin-bound peripheral focal adhesion (FA) formations in TNBC cells as determined by co-staining of actin and vinculin followed by confocal microscopy. These large, stabilized actin-bound peripheral FAs indicated a defective FA turnover, and were reported to be responsible for impairing directed cell migration. Our results suggest that, in TNBC cells, calcium influx through TRPC3 channel positively regulates NFATc1 nuclear translocation and GPC6 expression, which maintains the dynamics of FA turnover and optimal cell migration. Our study reveals a novel TRPC3-NFATc1-GPC6-vinculin signaling cascade in maintaining the migration of TNBC cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI