Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hydro发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
4秒前
想顺利毕业完成签到 ,获得积分10
4秒前
郭腾发布了新的文献求助10
4秒前
bkagyin应助迷路的邪欢采纳,获得20
4秒前
量子星尘发布了新的文献求助10
5秒前
donny发布了新的文献求助10
5秒前
丘比特应助杜晓倩采纳,获得10
6秒前
tyz完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
无花果应助potato采纳,获得10
7秒前
无奈萝发布了新的文献求助10
7秒前
8秒前
情怀应助茶米采纳,获得10
8秒前
9秒前
米米碎片完成签到,获得积分10
9秒前
rsdggsrser完成签到 ,获得积分10
10秒前
Ttttt发布了新的文献求助10
10秒前
wanci应助qiong采纳,获得10
11秒前
tyz关闭了tyz文献求助
11秒前
11秒前
FashionBoy应助donny采纳,获得10
12秒前
顺利毕业完成签到,获得积分10
12秒前
学长发布了新的文献求助10
13秒前
刘岩松完成签到,获得积分20
14秒前
14秒前
ooqqoo发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
67way完成签到,获得积分10
16秒前
俭朴的寇完成签到,获得积分10
16秒前
17秒前
情怀应助隐形期待采纳,获得30
17秒前
Vinny完成签到,获得积分10
17秒前
英俊的铭应助糟糕的铁锤采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133