清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
9秒前
小马甲应助科研通管家采纳,获得10
29秒前
32秒前
40秒前
紫熊完成签到,获得积分10
1分钟前
奋斗的小研完成签到,获得积分10
1分钟前
1分钟前
锦城纯契完成签到 ,获得积分10
1分钟前
常有李完成签到,获得积分10
3分钟前
Azure完成签到 ,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
carolsoongmm完成签到,获得积分10
4分钟前
hu完成签到,获得积分20
5分钟前
5分钟前
精明代灵完成签到,获得积分10
5分钟前
精明代灵发布了新的文献求助10
5分钟前
hu发布了新的文献求助10
5分钟前
5分钟前
gwbk完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
kklkimo完成签到,获得积分10
6分钟前
慕青应助erjfuhe采纳,获得10
6分钟前
月军完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
Wenfeifei发布了新的文献求助50
7分钟前
无私雅柏完成签到 ,获得积分10
8分钟前
orixero应助笑点低的斑马采纳,获得10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
Criminology34应助纯真的傲玉采纳,获得10
8分钟前
Criminology34应助纯真的傲玉采纳,获得10
9分钟前
9分钟前
9分钟前
陳.发布了新的文献求助10
10分钟前
10分钟前
bji完成签到,获得积分10
10分钟前
兰球的仙人掌完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864433
关于积分的说明 15107930
捐赠科研通 4823164
什么是DOI,文献DOI怎么找? 2582020
邀请新用户注册赠送积分活动 1536109
关于科研通互助平台的介绍 1494538