亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼完成签到,获得积分10
5秒前
18秒前
无情的琳发布了新的文献求助10
21秒前
41秒前
51秒前
CAOHOU应助路漫漫其修远兮采纳,获得10
54秒前
松林揽月发布了新的文献求助10
56秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Jasper应助路漫漫其修远兮采纳,获得10
1分钟前
万能图书馆应助愿景采纳,获得10
1分钟前
桐桐应助Wei采纳,获得10
1分钟前
1分钟前
7_2U1发布了新的文献求助10
1分钟前
1分钟前
7_2U1完成签到,获得积分20
1分钟前
1分钟前
1分钟前
Panther完成签到,获得积分10
1分钟前
2分钟前
RE完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
paannqi完成签到,获得积分10
2分钟前
zone54188完成签到,获得积分10
2分钟前
3分钟前
Wa1Zh0u发布了新的文献求助30
3分钟前
嘻嘻完成签到,获得积分10
3分钟前
liman发布了新的文献求助30
3分钟前
summer完成签到,获得积分10
3分钟前
噜噜完成签到,获得积分10
3分钟前
隐形曼青应助噜噜采纳,获得30
3分钟前
4分钟前
小珂完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
愿景发布了新的文献求助10
5分钟前
平常寄容发布了新的文献求助10
6分钟前
我是老大应助徐志豪采纳,获得10
6分钟前
平常寄容完成签到,获得积分20
6分钟前
Wa1Zh0u完成签到,获得积分20
6分钟前
bkagyin应助愿景采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401