Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆王完成签到,获得积分10
1秒前
汪宇完成签到 ,获得积分10
1秒前
2秒前
橙子完成签到,获得积分10
2秒前
CikY完成签到,获得积分10
2秒前
rLD7p发布了新的文献求助10
3秒前
3秒前
4秒前
漠之梦发布了新的文献求助10
4秒前
打打应助michael采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
alpv完成签到,获得积分10
6秒前
小鱼留下了新的社区评论
7秒前
aichan完成签到,获得积分10
8秒前
青柠发布了新的文献求助10
8秒前
明天发布了新的文献求助20
9秒前
予安发布了新的文献求助10
9秒前
大力帽子发布了新的文献求助10
10秒前
陶醉之玉完成签到,获得积分10
10秒前
yuyu发布了新的文献求助30
10秒前
10秒前
Angora完成签到,获得积分10
11秒前
我要查文献完成签到 ,获得积分10
11秒前
1122完成签到 ,获得积分10
12秒前
Maestro_S应助Lorain采纳,获得10
12秒前
FOREST完成签到,获得积分20
14秒前
大厉害完成签到,获得积分10
15秒前
果冻呀发布了新的文献求助10
15秒前
16秒前
西西发布了新的文献求助10
16秒前
Luka完成签到,获得积分10
17秒前
魔幻的凤凰完成签到,获得积分10
17秒前
左眼天堂完成签到,获得积分10
17秒前
18秒前
19秒前
温柔的傲霜完成签到,获得积分10
19秒前
龙仔发布了新的文献求助10
20秒前
FOD完成签到 ,获得积分10
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708988
求助须知:如何正确求助?哪些是违规求助? 5191995
关于积分的说明 15255588
捐赠科研通 4861880
什么是DOI,文献DOI怎么找? 2609733
邀请新用户注册赠送积分活动 1560175
关于科研通互助平台的介绍 1517941