Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔山西红柿完成签到,获得积分10
1秒前
没有名字完成签到 ,获得积分10
7秒前
青黛完成签到 ,获得积分10
7秒前
Dank1ng完成签到,获得积分10
8秒前
杰2580完成签到,获得积分10
9秒前
大宝剑2号完成签到 ,获得积分10
10秒前
能干妙竹完成签到,获得积分10
11秒前
小珂完成签到,获得积分10
14秒前
皮皮虾完成签到 ,获得积分10
16秒前
17秒前
不能吃太饱完成签到 ,获得积分10
19秒前
buqi发布了新的文献求助10
20秒前
伶俐紫完成签到,获得积分10
21秒前
21秒前
22秒前
Annie发布了新的文献求助20
22秒前
二队淼队长完成签到,获得积分10
23秒前
我是老大应助清沧炽魂采纳,获得10
23秒前
彳亍宣完成签到 ,获得积分10
24秒前
缥缈的闭月完成签到,获得积分10
27秒前
buqi完成签到,获得积分10
27秒前
孔wj完成签到,获得积分10
28秒前
縤雨完成签到 ,获得积分10
28秒前
28秒前
Tao完成签到,获得积分10
33秒前
33秒前
黄景滨完成签到 ,获得积分10
34秒前
35秒前
wwrjj完成签到,获得积分10
36秒前
liu完成签到,获得积分10
36秒前
孤独听雨的猫完成签到 ,获得积分10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
不倦应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
38秒前
macarthur发布了新的文献求助10
38秒前
38秒前
HaojunWang完成签到 ,获得积分10
39秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561