Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇娇大王完成签到,获得积分0
刚刚
KeLiang发布了新的文献求助10
刚刚
刚刚
十二发布了新的文献求助10
1秒前
1秒前
聪明友安发布了新的文献求助10
1秒前
鹿尚完成签到,获得积分10
2秒前
orixero应助活泼的手机采纳,获得30
2秒前
赵富贵完成签到,获得积分10
3秒前
kiki发布了新的文献求助10
3秒前
陈爽er完成签到,获得积分20
4秒前
doo完成签到,获得积分10
4秒前
5秒前
Orange应助无辜秋珊采纳,获得10
6秒前
鹿尚发布了新的文献求助10
6秒前
ljy发布了新的文献求助10
6秒前
追寻紫安发布了新的文献求助10
6秒前
脑洞疼应助一定毕业的我采纳,获得10
7秒前
cloud完成签到,获得积分10
7秒前
8秒前
8秒前
雾仁完成签到 ,获得积分10
9秒前
然大宝完成签到,获得积分10
9秒前
我是老大应助苏栀采纳,获得10
9秒前
10秒前
10秒前
共享精神应助昏睡的飞雪采纳,获得10
10秒前
11秒前
搜集达人应助柏柳采纳,获得30
11秒前
YY完成签到 ,获得积分10
11秒前
绿油油完成签到,获得积分10
11秒前
现在完成签到,获得积分10
12秒前
科研通AI6应助有意义采纳,获得10
12秒前
完美世界应助KOZUME采纳,获得30
12秒前
sonya发布了新的文献求助10
12秒前
坚守初心完成签到,获得积分10
13秒前
科研通AI6应助LMY采纳,获得10
13秒前
llm的同桌给llm的同桌的求助进行了留言
14秒前
学习鱼完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468912
求助须知:如何正确求助?哪些是违规求助? 4572192
关于积分的说明 14334180
捐赠科研通 4499045
什么是DOI,文献DOI怎么找? 2464811
邀请新用户注册赠送积分活动 1453392
关于科研通互助平台的介绍 1427948