Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
aixiaoming0503完成签到,获得积分10
3秒前
forge完成签到,获得积分10
3秒前
4秒前
Distance完成签到,获得积分10
7秒前
蒋念寒发布了新的文献求助10
8秒前
雪雨夜心完成签到,获得积分10
12秒前
又是一年完成签到,获得积分10
13秒前
Distance发布了新的文献求助10
14秒前
李子完成签到 ,获得积分10
15秒前
15秒前
耍酷的指甲油完成签到,获得积分20
16秒前
安小磊完成签到 ,获得积分10
17秒前
雄i完成签到,获得积分10
20秒前
明亮的遥完成签到 ,获得积分0
22秒前
安澜完成签到,获得积分10
22秒前
MG_XSJ应助1111采纳,获得10
25秒前
尊敬太阳完成签到,获得积分20
26秒前
27秒前
量子星尘发布了新的文献求助30
28秒前
健壮安柏完成签到 ,获得积分10
29秒前
Jasper应助忧郁紫翠采纳,获得10
30秒前
30秒前
31秒前
31秒前
rayqiang完成签到,获得积分10
31秒前
31秒前
31秒前
蛋堡完成签到 ,获得积分10
32秒前
33秒前
111完成签到 ,获得积分10
33秒前
zgt01发布了新的文献求助10
33秒前
songvv发布了新的文献求助10
34秒前
温文尔雅完成签到,获得积分10
34秒前
1111完成签到,获得积分10
36秒前
雪花发布了新的文献求助10
37秒前
39秒前
zgt01完成签到,获得积分10
41秒前
传统的寒凝完成签到,获得积分10
42秒前
木光完成签到,获得积分10
42秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022