Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒适金鱼完成签到,获得积分10
1秒前
靛蓝喹啉完成签到 ,获得积分10
1秒前
英俊完成签到,获得积分10
2秒前
2秒前
耍酷天寿发布了新的文献求助10
4秒前
研友_VZG7GZ应助wmq采纳,获得10
5秒前
赘婿应助傻傻的雅寒采纳,获得10
6秒前
鲤鱼睿渊完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
开心的茗茗完成签到 ,获得积分10
7秒前
李爱国应助1212采纳,获得10
8秒前
huang_xiaohuo完成签到,获得积分10
9秒前
9秒前
Akim应助溪水哗哗采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
乔凌云完成签到 ,获得积分10
12秒前
Elijah完成签到,获得积分10
15秒前
无花果应助冰与火采纳,获得30
16秒前
迷人的贻发布了新的文献求助10
16秒前
17秒前
20秒前
20秒前
yy发布了新的文献求助10
20秒前
学习完成签到 ,获得积分10
21秒前
22秒前
浪子应助开心的茗茗采纳,获得10
23秒前
Hello应助开心的茗茗采纳,获得10
23秒前
Elijah发布了新的文献求助10
23秒前
大花花完成签到,获得积分10
24秒前
26秒前
wnan_07完成签到,获得积分10
29秒前
blenx完成签到,获得积分10
29秒前
zhangmeimei发布了新的文献求助10
29秒前
30秒前
31秒前
32秒前
上善若水完成签到,获得积分10
34秒前
隐形曼青应助3719left采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978