已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance degradation assessment of rolling bearings for electrostatic monitoring based on IDDAE and ADPC

降级(电信) 计算机科学 材料科学 可靠性工程 机械工程 法律工程学 环境科学 机械 物理 工程类 电信
作者
Xinyue Wei,Dewen Li,Zihan Li,Jing Cai,Li Ai,Ying Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016208-016208
标识
DOI:10.1088/1361-6501/ad8951
摘要

Abstract To improve the early degradation detection capability of the electrostatic monitoring system for rolling bearings, a performance degradation evaluation method based on improved deep denoising autoencoder and adaptive density peak clustering (ADPC) is proposed in this paper. Firstly, the fusion of electrostatic charge signal features with conventional time-domain, frequency-domain and time–frequency-domain features constitutes the characteristic parameter set of the electrostatic monitoring system indicating the status of the bearings. Then, in order to improve the feature extraction ability of DAE, the deep network DDAE is constructed, and L1 regularisation and Dropout mechanism are applied to avoid overfitting in the deep network, so as to achieve non-linear mapping dimensionality reduction of high-dimensional features. Moreover, to eliminate the error caused by manually selecting the clustering centre, the parameters are adaptively determined by entropy value method and comprehensive optimisation search on the basis of DPC, thus avoiding the ‘chain effect’ that occurs in traditional DPC when data are incorrectly aggregated due to incorrect assignment of clustering centres. Consequently, an improved ADPC algorithm is used to establish a model to measure the health status of bearings, calculate the Mahalanobis distance (MD) between the test set and the cluster centre, and quantitatively characterize the degree of performance degradation of rolling bearings. Finally, combining the 3 δ principle, a repair method that can satisfy online monitoring and adapt to spurious fluctuations in different situations is established on a sliding window to obtain an improved index IMD that can accurately characterise the rolling bearing degradation process. The experimental results show that the proposed method can identify early bearing degradation earlier and has better monotonicity, robustness and tendency than other performance degradation assessment methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊丽莎白发布了新的文献求助10
刚刚
领导范儿应助zzzdx采纳,获得10
3秒前
可爱的函函应助ke888采纳,获得30
4秒前
6秒前
bkagyin应助panyang采纳,获得10
7秒前
加油完成签到,获得积分10
7秒前
WXZ完成签到 ,获得积分10
7秒前
123发布了新的文献求助10
8秒前
9秒前
10秒前
善学以致用应助初夏采纳,获得10
12秒前
科研通AI2S应助lxy采纳,获得10
13秒前
bkagyin应助Oying采纳,获得10
13秒前
思源应助wz采纳,获得10
14秒前
15秒前
15秒前
清风完成签到,获得积分20
19秒前
pjjjjjjj发布了新的文献求助10
19秒前
Eamin发布了新的文献求助10
19秒前
20秒前
曾俊宇完成签到 ,获得积分10
21秒前
孙佳琦完成签到,获得积分10
22秒前
王啸岳完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
25秒前
充电宝应助还没睡采纳,获得10
25秒前
研小白发布了新的文献求助10
27秒前
Oying发布了新的文献求助10
27秒前
28秒前
29秒前
合适忆山完成签到,获得积分20
30秒前
31秒前
zzzdx发布了新的文献求助10
31秒前
33秒前
重要灵寒发布了新的文献求助10
34秒前
35秒前
Eamin完成签到,获得积分10
35秒前
烟花应助lululu采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779070
求助须知:如何正确求助?哪些是违规求助? 5645586
关于积分的说明 15451137
捐赠科研通 4910574
什么是DOI,文献DOI怎么找? 2642735
邀请新用户注册赠送积分活动 1590426
关于科研通互助平台的介绍 1544793