Engineering the Substrate Specificity of UDP‐Glycosyltransferases for Synthesizing Triterpenoid Glycosides with a Linear Trisaccharide as Aided by Ancestral Sequence Reconstruction

三糖 区域选择性 糖基化 糖基转移酶 糖苷 葡萄糖基转移酶 化学 立体化学 功能(生物学) 生物 生物化学 遗传学 催化作用
作者
Xing Jian,Qiuyan Sun,Wentao Xu,Haobo Qu,Xudong Feng,Qing Li
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/ange.202409867
摘要

Triterpenoids have wide applications in the pharmaceutical and agricultural industries. The glycosylation of triterpenoids catalyzed by UDP‐glycosyltransferases (UGTs) is a crucial method for producing valuable derivatives with enhanced functions. However, only a few UDP‐glucosyltransferases have been reported to synthesize the rare triterpenoids with linear‐chain trisaccharide at C3‐OH. This study revealed that the UGT91H subfamily primarily contributed to the 2"‐O‐glycosylation of triterpenoids with high regioselectivity, then the substrate scope was further expanded by ancestral sequence reconstruction (ASR). With ancestral enzyme UGT91H_A1 as a model, the sequence‐structure‐function relationship was explored. A RTAS loop (R212/T213/A214/S215) was identified to affect the substrate specificity of UGT91H_A1. Transferring this RTAS loop to the corresponding position of UGT91H enzymes successfully expanded their substrate spectra. The functional role of RTAS loop was further elucidated by molecular dynamics simulation and quantum mechanical computation. UGT91H_A1 was applied to the low‐cost synthesis of terpenoid rhamnosides with linear trisaccharide in combining with a self‐sufficient UDP‐rhamnose regeneration system. Finally, we developed a phylogeny‐based platform to efficiently mining new UGT91Hs from plant genomic data. This study provided robust biocatalysts for synthesizing various triterpenoid glycosides with linear trisaccharide and demonstrated ASR as an efficient tool in engineering the function of UDP‐glycosyltransferases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhong发布了新的文献求助10
2秒前
2秒前
神仙也抠脚丫完成签到,获得积分10
2秒前
2秒前
3秒前
岩中花树完成签到,获得积分10
3秒前
3秒前
科研小白完成签到,获得积分10
4秒前
4秒前
追梦发布了新的文献求助10
4秒前
4秒前
豆包完成签到,获得积分10
4秒前
怕孤单的耳机完成签到,获得积分10
4秒前
成就梦松发布了新的文献求助10
4秒前
Donnie发布了新的文献求助10
5秒前
scc完成签到,获得积分10
5秒前
呼叫554发布了新的文献求助30
5秒前
Ava应助向北游采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
科研通AI5应助MRCHONG采纳,获得10
6秒前
Simon应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
wangg完成签到,获得积分20
6秒前
6秒前
Zn应助科研通管家采纳,获得20
6秒前
吹雪完成签到,获得积分0
6秒前
暴躁四叔应助科研通管家采纳,获得20
7秒前
7秒前
wanci应助科研通管家采纳,获得30
7秒前
7秒前
hhh发布了新的文献求助10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672