Perovskite Probe-Based Machine Learning Imaging Model for Rapid Pathologic Diagnosis of Cancers

癌症 乳腺癌 病理 肺癌 接收机工作特性 癌症研究 医学 放射科 人工智能 计算机科学 内科学
作者
Jimei Chi,Yonggan Xue,Yinying Zhou,Teng Han,Bobin Ning,Lijun Cheng,Hongfei Xie,Huadong Wang,Wen‐Chen Wang,Qingyu Meng,Kaijie Fan,Fangming Gong,Junzhen Fan,Nan Jiang,Zhongfan Liu,Ke Pan,Hongyu Sun,Jiajin Zhang,Qian Zheng,Jiandong Wang,Meng Su,Yanlin Song
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (35): 24295-24305
标识
DOI:10.1021/acsnano.4c06351
摘要

Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陈海明完成签到,获得积分10
3秒前
科研通AI2S应助苻尔曼采纳,获得10
4秒前
活泼的莫茗应助苻尔曼采纳,获得10
4秒前
ChouNen完成签到,获得积分10
4秒前
小巧问芙完成签到 ,获得积分10
5秒前
千逐完成签到,获得积分10
7秒前
cuc发布了新的文献求助10
8秒前
研友_LMBlAn发布了新的文献求助10
8秒前
甜甜奇异果完成签到,获得积分10
10秒前
落后芹菜完成签到,获得积分10
10秒前
cuc完成签到,获得积分10
17秒前
毛豆应助险胜采纳,获得10
18秒前
在水一方完成签到,获得积分0
22秒前
清颜发布了新的文献求助20
22秒前
文章多多完成签到 ,获得积分10
24秒前
asdfqwer应助weishen采纳,获得10
27秒前
28秒前
权志龙爱科研完成签到,获得积分10
29秒前
李爱国应助从容的烧鹅采纳,获得10
30秒前
小曦仔完成签到,获得积分10
30秒前
32秒前
英俊的铭应助清爽的一笑采纳,获得10
34秒前
syr完成签到 ,获得积分10
36秒前
37秒前
37秒前
啊哈哈哈完成签到,获得积分10
38秒前
39秒前
HWei完成签到,获得积分10
39秒前
甜美的瑾瑜完成签到,获得积分10
41秒前
41秒前
chenchen完成签到,获得积分10
43秒前
Vincent发布了新的文献求助10
44秒前
44秒前
Yuzuru_gyq完成签到 ,获得积分10
47秒前
Lili完成签到,获得积分10
48秒前
莫休完成签到 ,获得积分10
48秒前
jzh6666发布了新的文献求助10
50秒前
52秒前
xiao完成签到,获得积分10
52秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312191
求助须知:如何正确求助?哪些是违规求助? 2944810
关于积分的说明 8521543
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115