富勒烯
有机太阳能电池
接受者
分子
聚集诱导发射
材料科学
有机分子
纳米技术
化学物理
光化学
化学工程
化学
有机化学
聚合物
光学
物理
工程类
复合材料
荧光
凝聚态物理
作者
Erming Feng,Chujun Zhang,Jianhui Chang,Feixiang Zhao,Bin Hu,Yunfei Han,Mengzhen Sha,Hengyue Li,Xiao-Jing Du,Caoyu Long,Yang Ding,Zhong-Jian Yang,Hang Yin,Qun Luo,Chang‐Qi Ma,Guanghao Lu,Zaifei Ma,Xiaotao Hao,Junliang Yang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-09-30
标识
DOI:10.1021/acsnano.4c06931
摘要
Translating high-performance organic solar cell (OSC) materials from spin-coating to scalable processing is imperative for advancing organic photovoltaics. For bridging the gap between laboratory research and industrialization, it is essential to understand the structural formation dynamics within the photoactive layer during printing processes. In this study, two typical printing-compatible solvents in the doctor-blading process are employed to explore the intricate mechanisms governing the thin-film formation in the state-of-the-art photovoltaic system PM6:L8-BO. Our findings highlight the synergistic influence of both the donor polymer PM6 and the solvent with a high boiling point on the structural dynamics of L8-BO within the photoactive layer, significantly influencing its morphological properties. The optimized processing strategy effectively suppresses the excessive aggregation of L8-BO during the slow drying process in doctor-blading, enhancing thin-film crystallization with preferential molecular orientation. These improvements facilitate more efficient charge transport, suppress thin-film defects and charge recombination, and finally enhance the upscaling potential. Consequently, the optimized PM6:L8-BO OSCs demonstrate power conversion efficiencies of 18.42% in small-area devices (0.064 cm
科研通智能强力驱动
Strongly Powered by AbleSci AI