Quantitative coronary angiography (QCA) typically employs traditional edge detection algorithms that often require manual correction. This has important implications for the accuracy of downstream 3D coronary reconstructions and computed haemodynamic indices (e.g. angiography-derived fractional flow reserve). We developed AngioPy, a deep-learning model for coronary segmentation that employs user-defined ground-truth points to boost performance and minimise manual correction. We compared its performance without correction with an established QCA system.