计算机科学
步态
惯性测量装置
分割
步态分析
事件(粒子物理)
阈值
实时计算
计算机视觉
人工智能
模拟
物理
量子力学
生理学
图像(数学)
生物
作者
Yifan Liu,Xing Liu,Qianhui Zhu,Yuan Chen,Yifei Yang,Haoyu Xie,Sheng Wang,Xingjun Wang
标识
DOI:10.3390/bioengineering11080806
摘要
The Dynamic Gait Event Identifier (DGEI) introduces a pioneering approach for real-time gait event detection that seamlessly aligns with the needs of embedded system design and optimization. DGEI creates a new standard for gait analysis by combining software and hardware co-design with real-time data analysis, using a combination of first-order difference functions and sliding window techniques. The method is specifically designed to accurately separate and analyze key gait events such as heel strike (HS), toe-off (TO), walking start (WS), and walking pause (WP) from a continuous stream of inertial measurement unit (IMU) signals. The core innovation of DGEI is the application of its dynamic feature extraction strategies, including first-order differential integration with positive/negative windows, weighted sleep time analysis, and adaptive thresholding, which together improve its accuracy in gait segmentation. The experimental results show that the accuracy rate of HS event detection is 97.82%, and the accuracy rate of TO event detection is 99.03%, which is suitable for embedded systems. Validation on a comprehensive dataset of 1550 gait instances shows that DGEI achieves near-perfect alignment with human annotations, with a difference of less than one frame in pulse onset times in 99.2% of the cases.
科研通智能强力驱动
Strongly Powered by AbleSci AI