A Case Study of Negated Adjectives in Commuters’ Twitter Complaints

心理学 情绪分析 应用心理学 自然语言处理 计算机科学
作者
Nicolas Ruytenbeek
出处
期刊:Languages [MDPI AG]
卷期号:9 (8): 274-274
标识
DOI:10.3390/languages9080274
摘要

In today’s digital society, social networks such as Twitter are a preferred place for expressing one’s emotions, especially when they are negative. Despite a growing interest in the variety of linguistic realizations of commuters’ complaints, little attention has so far been paid to writers’ choices, especially when morphologically or syntactically simpler alternative formulations are available. A typical example is the “inference towards the antonym” triggered by the negation of contrary adjectives, an effect that is stronger for positive compared to negative adjectives. In the context of railway transport, a customer could use the negative statement The train is not clean instead of the corresponding affirmative sentence The train is dirty. It remains unclear, in our current state of knowledge, why online customers would prefer more complex constructions to voice their criticisms. Based on a large corpus of tweets sent to the French and Belgian national railway companies by their customers, I have semi-automatically extracted instances of not (very) + adjective (ADJ). Based on previous observations in the literature, I expected positive adjectives to be more frequently used in these negative environments compared to negative ones. As recent research demonstrates that one’s desire to save the interlocutor’s face is not necessarily the only reason why positive adjectives are used in linguistically negative environments, other motivations will also be considered. More precisely, I suggest that in a context where negativity is prevalent, customers using negated positive adjectives kill two birds with one stone: not only do they signal an issue with a product or a service, pointing to expectations that have not been met by the company, but they also mitigate the impact of their negative comments to the positive face of the service managers with whom they are interacting. By offering a quantitative, corpus-based analysis of negative constructions, complemented by a qualitative linguistic analysis of selected examples, this research sheds new light on users’ lexical choices in online negative customer feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI2S应助qzj采纳,获得10
刚刚
songxia完成签到,获得积分10
刚刚
科研通AI5应助哈哈哈哈采纳,获得10
刚刚
huanghuahua发布了新的文献求助10
1秒前
学习中勿扰完成签到,获得积分20
1秒前
2秒前
沈海完成签到,获得积分10
2秒前
2秒前
搂猫睡觉的鱼完成签到,获得积分20
2秒前
今后应助zsh采纳,获得10
3秒前
彼岸花发布了新的文献求助10
3秒前
4秒前
5秒前
黄大师发布了新的文献求助10
5秒前
顾矜应助melon采纳,获得10
5秒前
隐形曼青应助平常雨泽采纳,获得10
6秒前
充电宝应助搂猫睡觉的鱼采纳,获得10
6秒前
情怀应助zzz采纳,获得10
7秒前
科研通AI5应助zzz采纳,获得10
7秒前
科研通AI5应助zzz采纳,获得10
7秒前
善学以致用应助zzz采纳,获得10
7秒前
科研小民工应助荡南桥采纳,获得200
7秒前
yuyu发布了新的文献求助10
7秒前
8秒前
桐桐应助赵阿赵采纳,获得20
9秒前
huanghuahua完成签到,获得积分10
9秒前
9秒前
Liy完成签到,获得积分10
9秒前
英俊的铭应助Someone采纳,获得10
9秒前
9秒前
CCCr发布了新的文献求助10
10秒前
科研通AI5应助DoctorTa采纳,获得10
10秒前
12秒前
Liy发布了新的文献求助10
12秒前
NexusExplorer应助2425采纳,获得10
12秒前
qzj发布了新的文献求助10
13秒前
来日可追发布了新的文献求助10
13秒前
所所应助大知闲闲采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3584452
求助须知:如何正确求助?哪些是违规求助? 3153442
关于积分的说明 9497040
捐赠科研通 2856039
什么是DOI,文献DOI怎么找? 1569842
邀请新用户注册赠送积分活动 735726
科研通“疑难数据库(出版商)”最低求助积分说明 721336