Smart City Traffic Data Analysis and Prediction Based on Weighted K-means Clustering Algorithm

聚类分析 计算机科学 k均值聚类 数据挖掘 算法 流量分析 人工智能 计算机网络
作者
Lei Li
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (6)
标识
DOI:10.14569/ijacsa.2024.0150618
摘要

Urban traffic congestion is becoming a more serious issue as urbanization picks up speed. This study improved the conventional K-means method to create a new traffic flow prediction algorithm that can more accurately estimate the city's traffic flow. Firstly, the traditional K-means algorithm is given different weights by weighting, so as to analyze the traffic congestion in five urban areas of Chengdu by changing the weight values, and based on this, a traffic flow prediction model is further designed by combining with Holt's exponential smoothing algorithm. The findings showed that the weighted K-means method is capable of accurately identifying the patterns of traffic congestion in Chengdu's five urban regions and the prediction model combined with Holt's exponential smoothing algorithm had a better prediction performance. Under the environmental conditions of high traffic flow, when the time was close to 12:00, the designed model was able to obtain a prediction value of 9.81 pcu/h, which was consistent with the actual situation. This shows that this study not only provides new ideas and methods for traffic management in smart cities but also provides a reference value for the design of traffic prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范范发布了新的文献求助10
刚刚
倩迷谜完成签到,获得积分0
1秒前
1秒前
酷酷的紫南完成签到 ,获得积分10
2秒前
迷人凡旋完成签到,获得积分20
2秒前
JamesPei应助大李包采纳,获得10
2秒前
2秒前
天涯完成签到 ,获得积分10
3秒前
shr完成签到,获得积分10
3秒前
落后以旋完成签到,获得积分10
3秒前
小二郎应助缚大哥采纳,获得10
3秒前
充电宝应助青木蓝采纳,获得10
4秒前
云中渊发布了新的文献求助10
4秒前
冷静的毛豆完成签到,获得积分10
4秒前
涵Allen完成签到 ,获得积分10
4秒前
思源应助wzxxxx采纳,获得10
4秒前
隐形曼青应助shelly0621采纳,获得10
5秒前
无敌鱼发布了新的文献求助10
5秒前
6秒前
meimei完成签到,获得积分10
6秒前
朴实的薯片完成签到,获得积分10
7秒前
way完成签到,获得积分10
8秒前
脑洞疼应助Chan0501采纳,获得10
9秒前
fancy完成签到 ,获得积分10
9秒前
Maglev发布了新的文献求助10
10秒前
10秒前
含糊的代丝完成签到 ,获得积分10
10秒前
10秒前
11秒前
小九发布了新的文献求助20
11秒前
zhui发布了新的文献求助10
12秒前
通达完成签到,获得积分10
13秒前
FashionBoy应助猪猪hero采纳,获得10
13秒前
jy发布了新的文献求助10
13秒前
祥云完成签到,获得积分10
13秒前
无敌鱼完成签到,获得积分10
14秒前
ffu完成签到 ,获得积分10
14秒前
天天快乐应助好的采纳,获得10
14秒前
14秒前
香蕉觅云应助科研小白花采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794