Xiaolin Zhang,Lei Yin,Sicong Zhu,Ruiqing Cheng,Yao Wen,Jun He
出处
期刊:Physical review日期:2024-07-25卷期号:110 (2)
标识
DOI:10.1103/physrevb.110.024428
摘要
Multiferroic tunneling junctions (MFTJs), which comprise magnetic electrodes and extremely thin ferroelectric tunneling barriers, are promising contenders for nonvolatile memory applications. Noncollinear antiferromagnetic ${\mathrm{Mn}}_{3}\mathrm{Sn}$ with time-reversal symmetry-breaking polarization properties and ferroelectric $\ensuremath{\alpha}\text{\ensuremath{-}}{\mathrm{In}}_{2}{\mathrm{Se}}_{3}$ may open up the possibility of constructing room-temperature MFTJs. In this study, we investigate the spin-correlation transport in the MFTJs with ${\mathrm{Mn}}_{3}\mathrm{Sn}/\mathrm{BN}/\ensuremath{\alpha}\text{\ensuremath{-}}{\mathrm{In}}_{2}{\mathrm{Se}}_{3}/{\mathrm{Mn}}_{3}\mathrm{Sn}$ structure using first-principles calculations. The resistance in this structure can be manipulated by tuning the directions of both the N\'eel vector of ${\mathrm{Mn}}_{3}\mathrm{Sn}$ and the electric polarization of the $\ensuremath{\alpha}\text{\ensuremath{-}}{\mathrm{In}}_{2}{\mathrm{Se}}_{3}$ layer. Thus, multiple tunneling resistive states can be realized. We predict that huge tunneling magnetoresistance up to 6650% can be obtained by switching the magnetically oriented N\'eel vectors of ${\mathrm{Mn}}_{3}\mathrm{Sn}$, and more than 8000% tunneling electrical resistance can be obtained by controlling the ferroelectric structure of $\ensuremath{\alpha}\text{\ensuremath{-}}{\mathrm{In}}_{2}{\mathrm{Se}}_{3}$. Our work underscores the potential applications of ${\mathrm{Mn}}_{3}\mathrm{Sn}$ in multiferroic nonvolatile memories and lays the foundation for the development of ultrafast and efficient spintronic devices utilizing antiferromagnets.