Low Melting Temperature Gallium–Indium Liquid Metal Anode for Solid-State Li-Ion Batteries

材料科学 阳极 液态金属 固态 离子 金属 无机化学 化学工程 冶金 工程物理 电极 有机化学 物理化学 化学 工程类
作者
Hua Wang,Xintong Li,Tianyi Li,X. Chelsea Chen,Kai-Ping Chang,Lei Chen,Zhenzhen Yang,Likun Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.4c11207
摘要

Solid-state Li-ion batteries are attracting attention for their enhanced safety features, higher energy density, and broader operational temperature range compared to systems based on liquid electrolytes. However, current solid-state Li-ion batteries face performance challenges, such as suboptimal cycling and poor rate capabilities, often due to inadequate interfacial contact between the solid electrolyte and electrodes. To address this issue, we incorporated a gallium–indium (Ga–In) liquid metal as the anode in a solid-state Li-ion battery setup, employing Li6PS5Cl as the solid electrolyte. Operating at room temperature, this configuration achieved an initial capacity of 389 mAh g–1 and maintained 88% of this capacity after 30 cycles at a 0.05 C rate. It also demonstrated a capacity retention of 66% after 500 cycles at a 0.5 C rate. In comparison to solid anode materials, such as tin, the Ga–In liquid metal exhibited superior cycling stability and rate capacity, which is due to the self-healing and fluid properties of the alloy that ensure stable interfacial contact with solid electrolytes. In situ X-ray diffraction (XRD) and ex situ scanning electron microscope (SEM) analyses revealed that indium does not directly participate in the lithiation/delithiation process. Instead, it helps maintain the alloy's low melting point, facilitating its return to a liquid state after delithiation. In a comparative analysis of stack pressure during cycling in cells utilizing Ga–In liquid metal and tin, the Ga–In liquid metal cell demonstrated an ability to buffer pressure increases associated with deformation. These findings suggest a promising approach for enhancing solid-state batteries by integrating liquid metal anodes, which improve interfacial contact and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yiyi发布了新的文献求助10
1秒前
贪玩代桃完成签到,获得积分10
1秒前
蔡雯发布了新的文献求助80
1秒前
anydwason发布了新的文献求助10
2秒前
华仔应助酷酷的涵蕾采纳,获得30
2秒前
来时模样完成签到,获得积分10
3秒前
4秒前
飞儿随缘发布了新的文献求助10
4秒前
CodeCraft应助对你微笑采纳,获得10
5秒前
6秒前
颜林林发布了新的文献求助10
6秒前
KKKhuan完成签到,获得积分10
6秒前
9秒前
9秒前
CodeCraft应助坚强的文轩采纳,获得10
9秒前
9秒前
10秒前
斯文败类应助Q123ba叭采纳,获得10
11秒前
滑滑梯不好玩完成签到,获得积分10
11秒前
小蘑菇应助hehe采纳,获得10
12秒前
李小白发布了新的文献求助10
13秒前
13秒前
sensensmart发布了新的文献求助10
13秒前
anydwason完成签到,获得积分10
14秒前
mo完成签到,获得积分10
14秒前
just发布了新的文献求助10
15秒前
晓晓晓完成签到,获得积分10
15秒前
yangfeidong完成签到,获得积分10
16秒前
对你微笑发布了新的文献求助10
17秒前
19秒前
19秒前
Handy完成签到,获得积分10
19秒前
20秒前
mo发布了新的文献求助10
20秒前
20秒前
jdj完成签到,获得积分10
20秒前
just完成签到,获得积分20
21秒前
阔达的冷风完成签到,获得积分10
22秒前
kimi完成签到,获得积分10
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477079
求助须知:如何正确求助?哪些是违规求助? 3068557
关于积分的说明 9108573
捐赠科研通 2760002
什么是DOI,文献DOI怎么找? 1514563
邀请新用户注册赠送积分活动 700319
科研通“疑难数据库(出版商)”最低求助积分说明 699453