原发性醛固酮增多症
亚型
生物标志物
醛固酮增多症
医学
继发性高血压
内科学
多路复用
醛固酮
生物信息学
肿瘤科
血压
内分泌学
病理
生物
遗传学
程序设计语言
计算机科学
作者
Fangli Zhou,Yun Ding,Fengming Chen,Qiming Tang,Jing Wang,Sheeno Thyparambil,Bo Jin,Zhi Han,C. James Chou,Xuefeng B. Ling,Ruben Yiqi Luo,Haoming Tian,Karl G. Sylvester,John C. Whitin,Harvey J. Cohen,Doff B. McElhinney,Li Tian,Xuefeng B. Ling,Yan Ren
出处
期刊:European journal of endocrinology
[Bioscientifica]
日期:2024-11-18
标识
DOI:10.1093/ejendo/lvae148
摘要
Abstract Objective Primary aldosteronism (PA), a significant cause of secondary hypertension affecting approximately 10% of patients with severe hypertension, exacerbates cardiovascular and cerebrovascular complications even after blood pressure control. PA is categorized into two main subtypes: unilateral aldosterone-producing adenomas (APA) and bilateral hyperaldosteronism (BHA), each requiring distinct treatment approaches. Accurate subtype classification is crucial for selecting the most effective treatment. The goal of this study was to develop novel blood-based proteomic biomarkers to differentiate between APA and BHA subtypes in patients with PA. Design and Methods Five subtyping differential protein biomarker candidates (APOC3, CD56, CHGA, KRT5, and AZGP1) were identified through targeted proteomic profiling of plasma. The subtyping efficiency of these biomarkers was assessed at both the tissue gene expression and blood protein expression levels. To explore the underlying biology of APA and BHA, significant differential pathways were investigated. Results The five-protein panel proved highly effective in distinguishing APA from BHA in both tissue and blood samples. By integrating these five protein biomarkers with aldosterone and renin, our blood-based predictive methods achieved remarkable ROC AUCs of 0.986 (95% CI: 0.963-1.000) for differentiating essential hypertension (EH) from PA, and 0.922 (95% CI: 0.846-0.998) for subtyping APA versus BHA. These outcomes surpass the performance of the existing Kobayashi score subtyping system. Furthermore, the study validated differential pathways associated with the pathophysiology of primary aldosteronism, aligning with current scientific knowledge and opening new avenues for advancing PA care. Conclusions The new blood-based biomarkers for PA subtyping hold the potential to significantly enhance clinical utility and advance the practice of PA care.
科研通智能强力驱动
Strongly Powered by AbleSci AI