Developing porous hip implants implementing topology optimization based on the bone remodelling model and fatigue failure.

拓扑优化 骨重建 多孔性 拓扑(电路) 疲劳试验 结构工程 材料科学 计算机科学 工程类 医学 复合材料 有限元法 内科学 电气工程
作者
Babak Ziaie,Xavier Velay,Waqas Saleem
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier]
卷期号:163: 106864-106864
标识
DOI:10.1016/j.jmbbm.2024.106864
摘要

In contemporary orthopaedic practice, total hip arthroplasty (THA) is a reliable surgical technique for hip joint replacement. However, introducing solid implants into human bone tissue can lead to complications, notably stress shielding and cortical hypertrophy. These issues often stem from mechanical mismatches, particularly stiffness disparities, between the solid implants and the bone tissue. A potential solution lies in adopting porous implant structures with lower stiffness and tuneable mechanical properties based on morphological parameters such as porosity, relative density, and unit cell sizes. This study, which is of significant importance to orthopaedic implant development, aims to develop porous implants that meet biological and manufacturing requirements, employing topology optimization methods to address the challenges associated with conventional solid implants. To achieve this objective, we conducted finite element analyses to compare the stress distribution within healthy bones with solid and newly developed porous implants under real-life loading conditions. The porous implants were designed with triply periodic minimal surface structures, featuring uniform relative density and gradient relative density mapping derived from topology optimization results considering additive manufacturing capabilities and biological constraints. Our findings provide critical insights into the impact on the bone's mechanical environment about the choice of implant. Specifically, solid implants significantly decrease applied stress within the cortical bone, leading to stress shielding and subsequent bone resorption, consistent with bone remodelling principles and Wolff's law. However, replacing the solid implant with uniform porosity with maximum compliance and employing gradient porous implants based on topology optimization methods significantly increases the strain energy density ratio. Specifically, the uniform gyroid, uniform diamond, gradient gyroid, and gradient diamond stems exhibited increases of 43%, 39%, 27%, and 25%, respectively, compared to the solid stem, effectively mitigating the stress shielding effect. However, amongst porous stems, only gradient designs could meet the mechanical strength requirements with a safety factor greater than one, rendering them suitable replacements for solid implants aimed at addressing associated complications. These results hold promise, particularly with the advancements in additive manufacturing methods capable of fabricating these porous implants with acceptable precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助陶醉觅夏采纳,获得10
刚刚
my完成签到,获得积分10
1秒前
orixero应助司马含卉采纳,获得10
1秒前
3秒前
可爱山彤发布了新的文献求助10
4秒前
5秒前
5秒前
星辰大海应助HelenZ采纳,获得10
7秒前
哈哈完成签到 ,获得积分10
7秒前
无奈芮发布了新的文献求助10
7秒前
风雨无阻完成签到,获得积分10
9秒前
sylviawj完成签到,获得积分10
9秒前
10秒前
81s关注了科研通微信公众号
11秒前
14秒前
彭凯完成签到,获得积分10
14秒前
Dandy完成签到,获得积分10
15秒前
15秒前
16秒前
bill完成签到,获得积分10
16秒前
斯文败类应助次一口8采纳,获得10
16秒前
Kenina完成签到,获得积分10
18秒前
20秒前
彭凯发布了新的文献求助10
21秒前
柯氏气团不是气团完成签到,获得积分10
22秒前
共享精神应助你好采纳,获得10
22秒前
Ai完成签到,获得积分10
22秒前
淡定的巧荷完成签到,获得积分10
23秒前
栀子发布了新的文献求助10
24秒前
刺猬快快跑完成签到,获得积分10
25秒前
华仔应助tianyy采纳,获得10
26秒前
26秒前
白小施发布了新的文献求助10
26秒前
一一应助那小子真帅采纳,获得10
27秒前
29秒前
30秒前
东华完成签到,获得积分20
30秒前
Owen应助HelenZ采纳,获得10
31秒前
布同完成签到,获得积分10
33秒前
白小施完成签到,获得积分10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264