Matching Pursuit Network: An Interpretable Sparse Time–Frequency Representation Method Toward Mechanical Fault Diagnosis

匹配追踪 代表(政治) 稀疏逼近 人工智能 匹配(统计) 断层(地质) 计算机科学 模式识别(心理学) 时频分析 机器学习 数学 计算机视觉 地质学 统计 压缩传感 地震学 政治学 滤波器(信号处理) 政治 法学
作者
Huibin Lin,Xiaofeng Huang,Zhuyun Chen,Guolin He,Chao-Yun Xi,W. Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/tnnls.2024.3483954
摘要

Rotatory machinery commonly operates in complex environments with strong noise and variable working conditions. Time-frequency representation offers a valuable method for capturing and analyzing nonstationary characteristics, making it particularly suitable for identifying transient fault-related features. However, despite these advantages, extracting robust and interpretable fault features in machinery operating under variable speeds remains a challenge with existing techniques. In this article, a novel sparse time-frequency representation (STFR) method, named matching pursuit network (MPNet) is proposed for mechanical fault diagnosis. First, a deep network structure with signal decomposition capability is constructed by well-defined interpretable matching pursuit (MP) units to automatically learn discriminative features from time-frequency inputs. Then, the weights of each effective component signal to reconstruct the raw input are designed to measure their contributions. Accordingly, the optimization criterion with structural similarity metric is produced to realize the model parameter update in an end-to-end manner. Finally, phenomenological model-based fault simulation signals and real fault signals from gearbox experiments are used for model training and testing, respectively. The results show that the proposed approach can well extract robust and interpretable time-frequency features and obviously outperforms the state-of-the-art time-frequency representation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
科研混子表锅完成签到,获得积分10
刚刚
天天快乐应助自觉志泽采纳,获得10
1秒前
t铁核桃1985完成签到 ,获得积分10
2秒前
水的叶子66完成签到,获得积分10
2秒前
PP完成签到,获得积分10
3秒前
李霞发布了新的文献求助10
3秒前
mango524完成签到,获得积分10
3秒前
Oo。发布了新的文献求助50
3秒前
chinh完成签到,获得积分10
3秒前
举不了一点栗子完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
ding应助tt采纳,获得10
5秒前
看文献搞科研完成签到,获得积分10
6秒前
6秒前
西瓜完成签到 ,获得积分10
6秒前
晨曦发布了新的文献求助10
6秒前
cindy完成签到,获得积分10
7秒前
genova完成签到,获得积分10
7秒前
没有花活儿完成签到,获得积分10
7秒前
111111发布了新的文献求助10
8秒前
sjckn发布了新的文献求助10
8秒前
时肆万完成签到,获得积分10
9秒前
9秒前
9秒前
dbdxyty完成签到,获得积分10
10秒前
shaw发布了新的文献求助20
10秒前
lmj717完成签到,获得积分10
10秒前
紫菜完成签到,获得积分10
12秒前
pophoo完成签到,获得积分10
13秒前
kyt_tt发布了新的文献求助30
13秒前
尘埃之影完成签到,获得积分10
14秒前
14秒前
fengmian完成签到,获得积分10
14秒前
缥缈的初阳完成签到,获得积分10
15秒前
隋承轩发布了新的文献求助10
16秒前
16秒前
纯情的馒头完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855