Absolute and Relative Binding Free Energy Calculations of Nucleotides to Multiple Protein Classes

GTP' 核苷酸 化学 静电 分子动力学 平均力势 结合能 伞式取样 生物物理学 计算化学 生物化学 物理 生物 基因 核物理学 量子力学
作者
Apoorva Purohit,Xiaolin Cheng
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c01440
摘要

Polyphosphate nucleotides, such as ATP, ADP, GTP, and GDP, play a crucial role in modulating protein functions through binding and/or catalytically activating proteins (enzymes). However, accurately calculating the binding free energies for these charged and flexible ligands poses challenges due to slow conformational relaxation and the limitations of force fields. In this study, we examine the accuracy and reliability of alchemical free energy simulations with fixed-charge force fields for the binding of four nucleotides to nine proteins of various classes, including kinases, ATPases, and GTPases. Our results indicate that the alchemical simulations effectively reproduce experimental binding free energies for all proteins that do not undergo significant conformational changes between their triphosphate nucleotide-bound and diphosphate nucleotide-bound states, with 87.5% (7 out of 8) of the absolute binding free energy results for 4 proteins within ±2 kcal/mol of experimental values and 88.9% (8 out of 9) of the relative binding free energy results for 9 proteins within ±3 kcal/mol of experimental values. However, our calculations show significant inaccuracies when divalent ions are included, suggesting that nonpolarizable force fields may not accurately capture interactions involving these ions. Additionally, the presence of highly charged and flexible ligands necessitates extensive conformational sampling to account for the long relaxation times associated with long-range electrostatic interactions. The simulation strategy presented here, along with its demonstrated accuracy across multiple protein classes, will be valuable for predicting the binding of nucleotides or their analogs to protein targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的振家完成签到,获得积分10
1秒前
1秒前
1秒前
大个应助hadern采纳,获得10
2秒前
转身风飘去完成签到,获得积分10
5秒前
5秒前
还单身的若蕊完成签到,获得积分10
5秒前
结实的逍遥完成签到,获得积分10
6秒前
龙在天发布了新的文献求助10
6秒前
混沌完成签到,获得积分10
7秒前
隐形曼青应助xjr采纳,获得10
9秒前
9秒前
10秒前
10秒前
12秒前
Nemo完成签到,获得积分20
12秒前
过时的不评完成签到,获得积分10
14秒前
年轻上线发布了新的文献求助10
15秒前
舒心的大有关注了科研通微信公众号
15秒前
含蓄宛海完成签到,获得积分10
16秒前
阳光he完成签到,获得积分10
18秒前
21秒前
Rchy完成签到,获得积分10
21秒前
orixero应助博修采纳,获得10
21秒前
左右兮完成签到,获得积分10
22秒前
24秒前
张小文完成签到,获得积分10
25秒前
William发布了新的文献求助10
25秒前
仇道罡发布了新的文献求助10
25秒前
酷酷海豚完成签到,获得积分10
26秒前
英姑应助LSS采纳,获得10
26秒前
xjr完成签到,获得积分10
28秒前
一一应助鲸鱼采纳,获得10
28秒前
芬达关注了科研通微信公众号
28秒前
29秒前
白白熊完成签到 ,获得积分10
30秒前
张小文发布了新的文献求助20
30秒前
31秒前
学术小混子完成签到,获得积分10
32秒前
执刀手发布了新的文献求助10
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262544
求助须知:如何正确求助?哪些是违规求助? 2903181
关于积分的说明 8324328
捐赠科研通 2573216
什么是DOI,文献DOI怎么找? 1398126
科研通“疑难数据库(出版商)”最低求助积分说明 654018
邀请新用户注册赠送积分活动 632623