ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study

医学 放化疗 磁共振成像 内窥镜检查 结直肠癌 放射科 置信区间 新辅助治疗 内科学 放射治疗 癌症 乳腺癌
作者
Junhao Zhang,Ruiqing Liu,Di Hao,Guangye Tian,Shiwei Zhang,Sen Zhang,Y. Zang,Kai Pang,Xuhua Hu,Keyu Ren,Mingjuan Cui,Shuhao Liu,Jinhui Wu,Quan Wang,Bo Feng,Weidong Tong,Yingchi Yang,Guiying Wang,Yun Lu
出处
期刊:Chinese Medical Journal [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/cm9.0000000000003391
摘要

Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment. In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley-McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model. The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744-0.940) and 0.737 (95% CI: 0.712-0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678-0.861) and 0.729 (95% CI: 0.628-0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609-0.783], accuracy: 0.659 [95% CI: 0.565-0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617-0.823], accuracy: 0.713 [95% CI: 0.612-0.809]) in the external test set. The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kobe发布了新的文献求助10
刚刚
小超仁完成签到 ,获得积分10
刚刚
英俊的铭应助天马采纳,获得10
1秒前
avalanche应助liuziyu采纳,获得10
1秒前
风中冷风完成签到,获得积分10
2秒前
AI发布了新的文献求助10
3秒前
sevenhill应助挽风风风风采纳,获得10
3秒前
林深时见鹿完成签到,获得积分10
3秒前
3秒前
lwl发布了新的文献求助20
4秒前
yjw发布了新的文献求助10
4秒前
英吉利25发布了新的文献求助10
5秒前
5秒前
wulalala完成签到,获得积分10
5秒前
yangzhudi2333完成签到,获得积分10
5秒前
5秒前
5秒前
莎莎完成签到 ,获得积分10
6秒前
6秒前
7秒前
搞怪易形完成签到,获得积分10
7秒前
挽风风风风完成签到,获得积分10
7秒前
8秒前
avalanche应助酷炫的天问采纳,获得50
8秒前
浮游应助zzz采纳,获得10
8秒前
雨雨发布了新的文献求助10
8秒前
123发布了新的文献求助10
8秒前
9秒前
9秒前
龙归大海完成签到,获得积分10
9秒前
nininini完成签到,获得积分20
10秒前
简单画笔完成签到,获得积分10
10秒前
Akim应助wu采纳,获得10
10秒前
跳跳熊发布了新的文献求助30
10秒前
江笙发布了新的文献求助10
10秒前
打打应助Crystal采纳,获得10
10秒前
天天快乐应助kobe采纳,获得10
10秒前
等待孤云发布了新的文献求助10
10秒前
一口李子皮完成签到,获得积分10
11秒前
VV2001完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429137
求助须知:如何正确求助?哪些是违规求助? 4542668
关于积分的说明 14181964
捐赠科研通 4460422
什么是DOI,文献DOI怎么找? 2445722
邀请新用户注册赠送积分活动 1436910
关于科研通互助平台的介绍 1414107