已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study

医学 放化疗 磁共振成像 内窥镜检查 结直肠癌 放射科 置信区间 新辅助治疗 内科学 放射治疗 癌症 乳腺癌
作者
Junhao Zhang,Ruiqing Liu,Hao Di,Guangye Tian,Shiwei Zhang,Sen Zhang,Y. Zang,Kai Pang,Xuhua Hu,Keyu Ren,Mingjuan Cui,Shuhao Liu,Jinhui Wu,Quan Wang,Bo Feng,Weidong Tong,Yingchi Yang,Guiying Wang,Yun Lu
出处
期刊:Chinese Medical Journal [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/cm9.0000000000003391
摘要

Abstract Background: Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment. Methods: In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley–McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model. Results: The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744–0.940) and 0.737 (95% CI: 0.712–0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678–0.861) and 0.729 (95% CI: 0.628–0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609–0.783], accuracy: 0.659 [95% CI: 0.565–0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617–0.823], accuracy: 0.713 [95% CI: 0.612–0.809]) in the external test set. Conclusion: The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的绝悟完成签到,获得积分10
1秒前
ww发布了新的文献求助10
1秒前
乘数完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
6秒前
orixero应助巷曲采纳,获得10
7秒前
哆面体发布了新的文献求助10
8秒前
9秒前
Murphy发布了新的文献求助10
9秒前
呼噜发布了新的文献求助10
11秒前
Emma完成签到 ,获得积分10
11秒前
专注的玉米完成签到 ,获得积分10
13秒前
13秒前
吴某星发布了新的文献求助10
14秒前
蜜桃吐司完成签到 ,获得积分10
16秒前
赘婿应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
sss完成签到 ,获得积分10
23秒前
azr关注了科研通微信公众号
35秒前
千寻未央完成签到 ,获得积分10
37秒前
仙女完成签到 ,获得积分10
38秒前
YJ888发布了新的文献求助10
40秒前
william完成签到,获得积分10
40秒前
Wish完成签到,获得积分10
40秒前
43秒前
树有麋鹿完成签到 ,获得积分10
45秒前
47秒前
48秒前
杨哈哈发布了新的文献求助10
53秒前
53秒前
吴某星完成签到 ,获得积分10
54秒前
54秒前
pgg发布了新的文献求助10
55秒前
酷波er应助容言采纳,获得10
57秒前
dengxu发布了新的文献求助10
58秒前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314227
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530722
捐赠科研通 2622271
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838