ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study

医学 放化疗 磁共振成像 内窥镜检查 结直肠癌 放射科 置信区间 新辅助治疗 内科学 放射治疗 癌症 乳腺癌
作者
Junhao Zhang,Ruiqing Liu,Di Hao,Guangye Tian,Shiwei Zhang,Sen Zhang,Y. Zang,Kai Pang,Xuhua Hu,Keyu Ren,Mingjuan Cui,Shuhao Liu,Jinhui Wu,Quan Wang,Bo Feng,Weidong Tong,Yingchi Yang,Guiying Wang,Yun Lu
出处
期刊:Chinese Medical Journal [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/cm9.0000000000003391
摘要

Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment. In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley-McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model. The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744-0.940) and 0.737 (95% CI: 0.712-0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678-0.861) and 0.729 (95% CI: 0.628-0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609-0.783], accuracy: 0.659 [95% CI: 0.565-0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617-0.823], accuracy: 0.713 [95% CI: 0.612-0.809]) in the external test set. The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助凤凰院凶真采纳,获得10
1秒前
LioXH发布了新的文献求助10
1秒前
晴明关发布了新的文献求助30
2秒前
小小小珂卿完成签到,获得积分10
3秒前
Candice发布了新的文献求助10
4秒前
4秒前
彭于晏应助呆呆采纳,获得10
4秒前
4秒前
情怀应助美好斓采纳,获得10
5秒前
6秒前
6秒前
lai完成签到,获得积分10
7秒前
8秒前
123完成签到,获得积分10
8秒前
Ava应助ll采纳,获得10
8秒前
billie完成签到,获得积分10
9秒前
FY完成签到 ,获得积分10
9秒前
靓丽代柔发布了新的文献求助10
9秒前
10秒前
10秒前
JamesPei应助hbq采纳,获得10
11秒前
共享精神应助熊儒恒采纳,获得10
11秒前
鸡冠要掉了完成签到,获得积分10
11秒前
12秒前
Ezio_sunhao发布了新的文献求助10
12秒前
Charley发布了新的文献求助10
12秒前
i7发布了新的文献求助10
12秒前
CodeCraft应助杜梦婷采纳,获得10
13秒前
13秒前
开心的凝云完成签到 ,获得积分10
13秒前
13秒前
13秒前
CC完成签到 ,获得积分10
13秒前
Orange应助靓丽代柔采纳,获得10
13秒前
14秒前
结实乐曲完成签到,获得积分10
14秒前
歪比八卜发布了新的文献求助10
15秒前
15秒前
跳跳糖发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131542
求助须知:如何正确求助?哪些是违规求助? 4333356
关于积分的说明 13500257
捐赠科研通 4170243
什么是DOI,文献DOI怎么找? 2286163
邀请新用户注册赠送积分活动 1287120
关于科研通互助平台的介绍 1228095