ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study

医学 放化疗 磁共振成像 内窥镜检查 结直肠癌 放射科 置信区间 新辅助治疗 内科学 放射治疗 癌症 乳腺癌
作者
Junhao Zhang,Ruiqing Liu,Di Hao,Guangye Tian,Shiwei Zhang,Sen Zhang,Y. Zang,Kai Pang,Xuhua Hu,Keyu Ren,Mingjuan Cui,Shuhao Liu,Jinhui Wu,Quan Wang,Bo Feng,Weidong Tong,Yingchi Yang,Guiying Wang,Yun Lu
出处
期刊:Chinese Medical Journal [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/cm9.0000000000003391
摘要

Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment. In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley-McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model. The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744-0.940) and 0.737 (95% CI: 0.712-0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678-0.861) and 0.729 (95% CI: 0.628-0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609-0.783], accuracy: 0.659 [95% CI: 0.565-0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617-0.823], accuracy: 0.713 [95% CI: 0.612-0.809]) in the external test set. The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕瑶摇啊发布了新的文献求助10
刚刚
刚刚
烟花应助无奈母鸡采纳,获得10
1秒前
搜集达人应助小懒采纳,获得10
1秒前
2秒前
小二郎应助令和采纳,获得10
5秒前
LSY28发布了新的文献求助10
5秒前
6秒前
酷波er应助wangchiyi采纳,获得10
7秒前
smalldesk完成签到,获得积分10
7秒前
还有跟发布了新的文献求助10
7秒前
tu123完成签到,获得积分10
8秒前
winnie你外卖到了完成签到,获得积分10
8秒前
BK发布了新的文献求助10
8秒前
song完成签到,获得积分10
8秒前
哈哈发布了新的文献求助10
8秒前
9秒前
10秒前
Rubia发布了新的文献求助10
10秒前
12秒前
Una发布了新的文献求助10
12秒前
桐桐应助令和采纳,获得10
14秒前
YukiXu发布了新的文献求助10
14秒前
fuga发布了新的文献求助30
14秒前
peiwenjing发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
粥粥发布了新的文献求助10
16秒前
abu完成签到,获得积分20
18秒前
18秒前
王静怡完成签到 ,获得积分10
18秒前
蓝天应助LSY28采纳,获得10
19秒前
19秒前
spyspy发布了新的文献求助100
21秒前
明理雨真发布了新的文献求助10
21秒前
remohu完成签到,获得积分10
22秒前
独特听芹完成签到,获得积分10
22秒前
NexusExplorer应助畅快灵薇采纳,获得10
22秒前
小葫芦完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588912
求助须知:如何正确求助?哪些是违规求助? 4671732
关于积分的说明 14789236
捐赠科研通 4626741
什么是DOI,文献DOI怎么找? 2532004
邀请新用户注册赠送积分活动 1500577
关于科研通互助平台的介绍 1468354