ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study

医学 放化疗 磁共振成像 内窥镜检查 结直肠癌 放射科 置信区间 新辅助治疗 内科学 放射治疗 癌症 乳腺癌
作者
Junhao Zhang,Ruiqing Liu,Hao Di,Guangye Tian,Shiwei Zhang,Sen Zhang,Y. Zang,Kai Pang,Xuhua Hu,Keyu Ren,Mingjuan Cui,Shuhao Liu,Jinhui Wu,Quan Wang,Bo Feng,Weidong Tong,Yingchi Yang,Guiying Wang,Yun Lu
出处
期刊:Chinese Medical Journal [Lippincott Williams & Wilkins]
标识
DOI:10.1097/cm9.0000000000003391
摘要

Abstract Background: Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment. Methods: In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley–McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model. Results: The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744–0.940) and 0.737 (95% CI: 0.712–0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678–0.861) and 0.729 (95% CI: 0.628–0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609–0.783], accuracy: 0.659 [95% CI: 0.565–0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617–0.823], accuracy: 0.713 [95% CI: 0.612–0.809]) in the external test set. Conclusion: The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
4秒前
传奇3应助浅眠采纳,获得10
4秒前
6秒前
单薄不惜完成签到,获得积分10
7秒前
冷静飞柏发布了新的文献求助10
8秒前
科研达人发布了新的文献求助10
10秒前
11秒前
11111发布了新的文献求助10
15秒前
猴猴完成签到,获得积分10
15秒前
斯文的夜雪完成签到 ,获得积分10
16秒前
MY999完成签到,获得积分10
17秒前
syvshc举报李李李求助涉嫌违规
18秒前
20秒前
贺兰发布了新的文献求助10
21秒前
盼盼完成签到,获得积分10
21秒前
21秒前
娜写年华完成签到 ,获得积分10
21秒前
11111完成签到,获得积分10
22秒前
陈麦子发布了新的文献求助10
22秒前
脑洞疼应助冷静飞柏采纳,获得10
22秒前
周稅完成签到,获得积分10
22秒前
科研达人发布了新的文献求助10
23秒前
23秒前
鳗鱼铸海完成签到 ,获得积分10
23秒前
加一完成签到,获得积分10
23秒前
浅眠发布了新的文献求助10
25秒前
师旖旎发布了新的文献求助10
26秒前
Connie发布了新的文献求助10
27秒前
奋斗的冬云完成签到,获得积分10
28秒前
ding应助QixuGuo采纳,获得10
29秒前
妖九笙完成签到 ,获得积分10
31秒前
kong发布了新的文献求助10
32秒前
浅眠完成签到,获得积分10
35秒前
36秒前
37秒前
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629