摘要
Chapter 33 Iron–Chromium Flow Battery Huan Zhang, Huan Zhang Dalian Polytechnic University, School of Textile and Material Engineering, Liao Ning Dalian, 116034 P. R. ChinaSearch for more papers by this authorChuanyu Sun, Chuanyu Sun University of Padova, Department of Industrial Engineering, Department of Chemical Sciences, Via Marzolo 1, I-35131 Padova, Italy Harbin Institute of Technology, School of Electrical Engineering and Automation, Harbin, 150001 P. R. ChinaSearch for more papers by this author Huan Zhang, Huan Zhang Dalian Polytechnic University, School of Textile and Material Engineering, Liao Ning Dalian, 116034 P. R. ChinaSearch for more papers by this authorChuanyu Sun, Chuanyu Sun University of Padova, Department of Industrial Engineering, Department of Chemical Sciences, Via Marzolo 1, I-35131 Padova, Italy Harbin Institute of Technology, School of Electrical Engineering and Automation, Harbin, 150001 P. R. ChinaSearch for more papers by this author Book Editor(s):Christina Roth, Christina RothSearch for more papers by this authorJens Noack, Jens NoackSearch for more papers by this authorMaria Skyllas-Kazacos, Maria Skyllas-KazacosSearch for more papers by this author First published: 06 January 2023 https://doi.org/10.1002/9783527832767.ch33 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Summary The Fe–Cr flow battery (ICFB), which is regarded as the first generation of real FB, employs widely available and cost-effective chromium and iron chlorides (CrCl 3 /CrCl 2 and FeCl 2 /FeCl 3 ) as electrochemically active redox couples. ICFB was initiated and extensively investigated by the National Aeronautics and Space Administration (NASA, USA) and Mitsui Group (Japan) between the 1970s and 1980s. From the past few decades to now, extensive investigations on the ICFB systems have been conducted. Moreover, due to the capital cost of ICFBs being much lower than that of all-vanadium FBs (VFBs) and zinc-based FBs (ZFBs) in theory, they have been seen as promising direction that possess a huge potential for large-scale promotion. With the issues of electrolyte intermixing, self-discharge phenomenon, permeation through the membrane/separator, and hydrogen evolution to be tackled, ICFB techniques will move further out of the labs and are expected to realize industrialization requirements such as high stability and high power rate. This chapter summarizes the research history, research progress of pivotal components (catholyte/anolyte, carbon electrodes, and separators), and development process of ICFBs, to provide concise guidance for researchers in the related fields. References Sun , C. , Vezzù , K. , Pagot , G. et al. ( 2019 ). Elucidation of the interplay between vanadium species and charge-discharge processes in VRFBs by Raman spectroscopy . Electrochimica Acta 318 : 913 – 921 . Di Noto , V. , Vezzù , K. , Crivellaro , G. et al. ( 2022 ). A general electrochemical formalism for vanadium redox flow batteries . Electrochimica Acta 408 : 139937 . Bartolozzi , M. ( 1989 ). Development of redox flow batteries. A historical bibliography . Journal of Power Sources 27 ( 3 ): 219 – 234 . Thaller , L.H. ( 1976 ). Electrically rechargeable REDOX flow cell . Patent U3996064, December 01, 1976. Odonnell , P. and Gahn , R.F. ( 1976 ). The Redox flow system for solar photovoltaic energy storage . In Photovoltaic Specialist Conference , no. NASA-TM-X-73562. 1976. January 01, 1976, https://ntrs.nasa.gov/api/citations/19770005579/downloads/19770005579.pdf . Sun , C. and Zhang , H. ( 2022 ). Review of the development of first-generation redox flow batteries: iron–chromium system . ChemSusChem 15 ( 1 ): e202101798 . L.H. Thaller (ed.) ( 1979 ). Redox flow cell energy storage systems.'' In Terrestrial Energy Systems Conference . January 01, 1979. p. 989, https://www.osti.gov/servlets/purl/6233866 . Chen , Z. , Liu , Y. , Yu , W. et al. ( 2021 ). Cost evaluation and sensitivity analysis of the alkaline zinc–iron flow battery system for large-scale energy storage applications . Journal of Energy Storage 44 : 103327 . Zeng , Y. ( 2017 ). High-performance iron–chromium redox flow batteries for large-scale energy storage . Thaller , LH . ( 1979 ). Electrochemical cell for rebalancing redox flow system . Google Patents . Gahn , R.F. , Hagedorn , N.H. , and Ling , J.S. ( 1983 ). Single cell performance studies on the Fe/Cr Redox Energy Storage System using mixed reactant solutions at elevated temperature . In Intersoc. Energy Conversion Engr. Conf ., no. NAS 1.15: 83385. https://ntrs.nasa.gov/api/citations/19830016771/downloads/19830016771.pdf. Zhang , H. and Sun , C. ( 2021 ). Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: a review . Journal of Power Sources 493 : 229445 . Johnson , D.A. and Reid , M.A. ( 2019 ). Chemical and electrochemical behavior of the Cr(III)/Cr(II) half-cell in the iron–chromium redox energy storage system . Journal of the Electrochemical Society 132 ( 5 ): 1058 – 1062 . Hagedorn , N.H. ( 1984 ). NASA Redox Storage System Development Project . Final report . Lewis Research Center; Report No.: DOE/NASA/12726-24; NASA-TM-83677; Other: ON: DE85000993 United States Other: ON: DE85000993 NTIS, PC A03/MF A01. HEDB English. Cleveland, OH (USA): National Aeronautics and Space Administration. Pawar , S.H. , Madhale , R.D. , Patil , P.S. , and Lokhande , C.D. ( 1988 ). Studies on iron–chromium redox storage system . Bulletin of Materials Science 10 ( 4 ): 367 – 372 . Wang , S. , Xu , Z. , Wu , X. et al. ( 2020 ). Analyses and optimization of electrolyte concentration on the electrochemical performance of iron–chromium flow battery . Applied Energy 271 : 115252 . Keshavarz , M. and Varadarajan , A. ( 2015 ). Methods for the preparation of electrolytes for chro mium–iron redox flow batteries . Google Patents . Bamgbopa , M.O. , Shao-Horn , Y. , and Almheiri , S. ( 2017 ). The potential of non-aqueous redox flow batteries as fast-charging capable energy storage solutions: demonstration with an iron–chromium acetylacetonate chemistry . Journal of Materials Chemistry A 5 ( 26 ): 13457 – 13468 . Robb , B.H. , Farrell , J.M. , and Marshak , M.P. ( 2019 ). Chelated chromium electrolyte enabling high-voltage aqueous flow batteries . Joule 3 ( 10 ): 2503 – 2512 . Waters , S.E. , Robb , B.H. , and Marshak , M.P. ( 2020 ). Effect of chelation on iron–chromium redox flow batteries . ACS Energy Letters 5 ( 6 ): 1758 – 1762 . K. Nozaki and T. Ozawa (eds.) ( 1982 ). Research and development of redox-flow battery in electrotechnical laboratory . In IECEC'82; Proceedings of the Seventeenth Intersociety Energy Conversion Engineering Conference (Vol. 2, pp. 610–615). https://ui.adsabs.harvard.edu/abs/1982iece.conf¨610N/abstract . Giner , J. , Jalan , V. , and Swette , L. ( 1982 ). Redox storage batteries . In: DECHEMA-Monographie , vol. 92 (ed. W. Vielstich ), 381 – 393 . Weinheim, Germany : Verlag Chemie https://scholar.google.com/scholar_lookup?title=Redox+Storage+Batteries&author=Giner,+J.&author=Jalan,+V.&author=Swette,+L.&publication_year=1982&pages=381%E2%80%93393 . Jalan , V. , Stark , H. , and Giner , J. ( 1981 ). Requirements for optimization of electrodes and electrolyte for the iron/chromium Redox flow cell . No. DOE/NASA/0097-80/1; NASA-CR-165218. NASA Lewis Research Center, Cleveland, OH (United States); Giner, Inc., Waltham, MA (USA), https://www.osti.gov/servlets/purl/5328915 . N.H. Hagedorn and L.H. Thaller (eds.) ( 1982 ). Design flexibility of redox flow systems . No. NASA-TM-82854, https://ntrs.nasa.gov/api/citations/19820023583/downloads/19820023583.pdf . Gahn , R.F. , Charleston , J. , Ling , J.S. , and Reid , M.A. ( 1981 ). Performance of advanced chromium electrodes for the NASA Redox Energy Storage System . No. DOE/NASA/12726-15, https://ntrs.nasa.gov/api/citations/19820004701/downloads/19820004701.pdf . Nozaki , K. , Kaneko , H. , Negishi , A. , and Ozawa , T. ( 1983 ). Research and development of redox flow cells in electrotechnical laboratory . Denki Kagaku 51 ( 1 ): 189 – 190 . Cnobloch , H. , Kellermann , W. , Nischik , H. et al. ( 1983 ). Redox ion flow cell for solar energy storage . Siemens Forschungs und Entwicklungsberichte 12 : 79 . Zeng , Y.K. , Zhou , X.L. , An , L. et al. ( 2016 ). A high-performance flow-field structured iron–chromium redox flow battery . Journal of Power Sources 324 : 738 – 744 . Zeng , Y.K. , Zhou , X.L. , Zeng , L. et al. ( 2016 ). Performance enhancement of iron–chromium redox flow batteries by employing interdigitated flow fields . Journal of Power Sources 327 : 258 – 264 . Zhong , S. , Padeste , C. , Kazacos , M. , and Skyllas-Kazacos , M. ( 1993 ). Comparison of the physical, chemical and electrochemical properties of rayon- and polyacrylonitrile-based graphite felt electrodes . Journal of Power Sources 45 ( 1 ): 29 – 41 . Zhang , H. , Tan , Y. , Luo , X.D. et al. ( 2019 ). Polarization effects of a rayon and polyacrylonitrile based graph ite felt for iron–chromium redox flow batteries . ChemElectroChem 6 ( 12 ): 3175 – 3188 . Zhang , H. , Tan , Y. , Li , J. , and Xue , B. ( 2017 ). Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance . Electrochimica Acta 248 : 603 – 613 . Jalan , V. , Morriseau , B. , and Swette , L. ( 1982 ). Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow calls . No. DOE/NASA/0198-1; NASA-CR-167921. Giner, Inc., Waltham, MA (USA), https://www.osti.gov/servlets/purl/6135611 . Zeng , Y.K. , Zhao , T.S. , An , L. et al. ( 2015 ). A comparative study of all-vanadium and iron–chromium redox flow batteries for large-scale energy storage . Journal of Power Sources 300 : 438 – 443 . Baolian , Y. , Bingchun , L. , Enjun , Z. , and Lijuan , W. ( 1992 ). Iron/chromium redox flow cell system . CIESC Journal 43 ( 3 ): 330 – 336 . de León , C.P. , Frías-Ferrer , A. , González-García , J. et al. ( 2006 ). Redox flow cells for energy conversion . Journal of Power Sources 160 ( 1 ): 716 – 732 . Zhang , H. , Chen , N. , Sun , C. , and Luo , X. ( 2020 ). Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron–chromium redox flow battery . International Journal of Energy Research 44 ( 5 ): 3839 – 3853 . Sun , B. and Skyllas-Kazacos , M. ( 1992 ). Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment . Electrochim Acta 37 ( 7 ): 1253 – 1260 . Lopez-Atalaya , M. , Codina , G. , Perez , J.R. et al. ( 1992 ). Optimization studies on a Fe/Cr redox flow battery . Journal of Power Sources 39 ( 2 ): 147 – 154 . Sun , B. and Skyllas-Kazacos , M. ( 1992 ). Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments . Electrochim Acta 37 ( 13 ): 2459 – 2465 . Zeng , Y.K. , Zhao , T.S. , Zhou , X.L. et al. ( 2016 ). The effects of design parameters on the charge-discharge performance of iron–chromium redox flow batteries . Applied Energy 182 : 204 – 209 . Pupkevich , V. , Glibin , V. , and Karamanev , D. ( 2007 ). The effect of activation on the electrochemical behaviour of graphite felt towards the Fe 3+ /Fe 2+ redox electrode reaction . Electrochemistry Communications 9 ( 8 ): 1924 – 1930 . Codina , G. and Aldaz , A. ( 1992 ). Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis . Journal of Applied Electrochemistry 22 ( 7 ): 668 – 674 . Hollax , E. and Cheng , D.S. ( 1985 ). The influence of oxidative pretreatment of graphite electrodes on the catalysis of the Cr 3+ /Cr 2+ and Fe 3+ /Fe 2+ redox reactions . Carbon 23 ( 6 ): 655 – 664 . Cheng , D.S. , Reiner , A. , and Hollax , E. ( 1985 ). Activation of hydrochloric acid-CrCl 3 · 6H 2 solutions with N-alkyfamines . Journal of Applied Electrochemistry 15 ( 1 ): 63 – 70 . Deshu , C. and Hollax , E. inventors ( 1985 ). Fraunhofer-Gesellschaft zur Foerderung der Angewan dten Forschung e.V., Muenchen (Germany, F.R.), assignee. Electrochemical redox cell. Elektrochemische Redoxzelle . Nischik , H. and Pantel , K. ( 1985 ). Battery consisting of redox cells. Batterie aus Redoxzellen . Tirukkovalluri , S.R. and Gorthi , R.K.H. ( 2013 ). Synthesis, characterization and evaluation of Pb electroplated carbon felts for achieving maximum efficiency of Fe-Cr redox flow cell . Journal of New Materials for Electrochemical Systems 16 ( 4 ): 287 – 292 . Cheng , D.S. and Hollax , E. ( 2019 ). The influence of thallium on the redox reaction Cr 3+ /Cr 2+ . Journal of the Electrochemical Society 132 ( 2 ): 269 – 273 . Wu , C.D. , Scherson , D.A. , Calvo , E.J. et al. ( 2019 ). A bismuth-based electrocatalyst for the chromous–chromic couple in acid electrolytes . Journal of the Electrochemical Society 133 ( 10 ): 2109 – 2112 . Wang , S. , Xu , Z. , Wu , X. et al. ( 2021 ). Excellent stability and electrochemical performance of the electrolyte with indium ion for iron–chromium flow battery . Electrochimica Acta 368 : 137524 . Ahn , Y. , Moon , J. , Park , S.E. et al. ( 2021 ). High-performance bifunctional electrocatalyst for iron–chromium redox flow batteries . Chemical Engineering Journal 421 : 127855 . Li , B. , Gu , M. , Nie , Z. et al. ( 2013 ). Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery . Nano Letters 13 ( 3 ): 1330 – 1335 . Grubač , Z. and Metikoš-Huković , M. ( 1999 ). Kinetics and mechanism of electrocrystallization of bismuth in oxide matrix . Electrochimica Acta 44 ( 25 ): 4559 – 4571 . Chen , N. , Zhang , H. , Luo , X.-D. , and Sun , C.-Y. ( 2020 ). SiO 2 -decorated graphite felt electrode by silicic acid etching for iron–chromium redox flow battery . Electrochimica Acta 336 : 135646 . Ling , J. and Charleston , J. ( 1980 ). Advances in membrane technology for the NASA Redox Energy-Storage System . No. DOE/NASA/12726-12; NASA-TM-82701; CONF-8009171-2. NASA Lewis Research Center, Cleveland, OH (United States), https://www.osti.gov/servlets/purl/6131261 . Thaller , L. Redox flow cell energy storage systems . In Terrestrial Energy Systems Conference (p. 989), https://www.osti.gov/servlets/purl/6233866 . Assink , R.A. ( 1984 ). Fouling mechanism of separator membranes for the iron/chromium redox battery . Journal of Membrane Science 17 ( 2 ): 205 – 217 . Sun , C. , Zlotorowicz , A. , Nawn , G. et al. ( 2018 ). [Nafion/(WO 3 ) x ] hybrid membranes for vanadium redox flow batteries . Solid State Ionics 319 : 110 – 116 . Sun , C. , Negro , E. , Nale , A. et al. ( 2021 ). An efficient barrier toward vanadium crossover in redox flow batteries: the bilayer [Nafion/(WO 3 ) x ] hybrid inorganic–organic membrane . Electrochimica Acta 378 : 138133 . Sun , C.Y. and Zhang , H. ( 2019 ). Investigation of Nafion series membranes on the performance of iron–chromium redox flow battery . International Journal of Energy Research 43 ( 14 ): 8739 – 8752 . Sun , C. , Negro , E. , Vezzù , K. et al. ( 2019 ). Hybrid inorganic–organic proton-conducting membran es based on SPEEK doped with WO 3 nanoparticles for application in vanadium redox flow batteries . Electrochimica Acta 309 : 311 – 325 . Kim , J. , Lee , Y. , Jeon , J.-D. , and Kwak , S.-Y. ( 2018 ). Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries . Journal of Power Sources 383 : 1 – 9 . Sun , C.-Y. , Zhang , H. , Luo , X.-D. , and Chen , N. ( 2019 ). A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron–chromium redox flow battery . Ionics 25 ( 9 ): 4219 – 4229 . Machado , C.A. , Brown , G.O. , Yang , R. et al. ( 2020 ). Redox flow battery membranes: improving battery performance by leveraging structure–property relationships . ACS Energy Letters 6 ( 1 ): 158 – 176 . Zhang , L. , Zhang , S. , Li , E. et al. ( 2019 ). Sulfonated poly(ether ether ketone) membrane for quinone-based organic flow batteries . Journal of Membrane Science 584 : 246 – 253 . Yuan , Z. , Li , X. , Hu , J. et al. ( 2014 ). Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium . Physical Chemistry Chemical Physics 16 ( 37 ): 19841 – 19847 . Wu , J. , Dai , Q. , Zhang , H. , and Li , X. ( 2020 ). Recent development in composite membranes for flow batteries . ChemSusChem 13 ( 15 ): 3805 – 3819 . Jiang , S. , Lu , S. , Xiang , Y. , and Jiang , S.P. ( 2019 ). The structure–activity relationship in membranes for vanadium redox flow batteries . Advanced Sustainable Systems 3 ( 8 ): 1900020 . Fedkiw , P.S. and Watts , R.W. ( 1984 ). A mathematical model for the iron/chromium redox battery . Journal of the Electrochemical Society 131 ( 4 ): 701 – 709 . https://doi.org/10.1149/1.2115676 . R.F. Gahn , N.H. Hagedorn , and J.A. Johnson (eds.) ( 1985 ). Cycling performance of the iron–chromium redox energy storage system . No. DOE/NASA/12726-25; NASA-TM-87034; CONF-850808-17. NASA Lewis Research Center, Cleveland, OH (United States), https://www.osti.gov/servlets/purl/5325610 . Gahn , R.F. and Hagedorn , N.H. ( 1985 ). Negative electrode catalyst for the iron chromium redox energy storage system . Patent US4543302A. September 01, 1985. Gahn , R.F. ( 1985 ). Method and apparatus for rebalancing a REDOX flow cell system . National Aeronautics and Space Administration Report. Zeng , Y.K. , Zhao , T.S. , Zhou , X.L. et al. ( 2017 ). A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron–chromium redox flow batteries . Journal of Power Sources 352 : 77 – 82 . Flow Batteries: From Fundamentals to Applications, Volume 2 ReferencesRelatedInformation