Predictive simulation of sit-to-stand based on reflexive-controllers

运动学 控制理论(社会学) 人体躯干 计算机科学 控制器(灌溉) 电动机控制 本体感觉 外骨骼 加速度 集合(抽象数据类型) 模拟 物理医学与康复 人工智能 心理学 物理 神经科学 医学 控制(管理) 经典力学 生物 农学 解剖 程序设计语言
作者
David F. Muñoz,Cristiano De Marchis,Leonardo Gizzi,Giacomo Severini
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (12): e0279300-e0279300 被引量:5
标识
DOI:10.1371/journal.pone.0279300
摘要

Sit-to-stand can be defined as a set of movements that allow humans to rise from a sitting position to a bipedal standing pose. These movements, often categorized as four distinct kinematic phases, must be coordinated for assuring personal autonomy and can be compromised by ageing or physical impairments. To solve this, rehabilitation techniques and assistive devices demand proper description of the principles that lead to the correct completion of this motor task. While the muscular dynamics of the sit-to-stand task have been analysed, the underlying neural activity remains unknown and largely inaccessible for conventional measurement systems. Predictive simulations can propose motor controllers whose plausibility is evaluated through the comparison between simulated and experimental kinematics. In the present work, we modelled an array of reflexes that originate muscle activations as a function of proprioceptive and vestibular feedback. This feedback encodes torso position, displacement velocity and acceleration of a modelled human body with 7 segments, 9 degrees of freedom, and 50 actuators. We implemented two controllers: a four-phases controller where the reflex gains and composition vary depending on the kinematic phase, and a simpler two-phases controller, where three of the kinematic phases share the same reflex gains. Gains were optimized using Covariance Matrix Adaptation. The results of the simulations reveal, for both controllers, human-like sit-to-stand movement, with joint angles and muscular activity comparable to experimental data. The results obtained with the simplified two-phases controller indicate that a simple set of reflexes could be sufficient to drive this motor task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyong完成签到,获得积分10
刚刚
天天快乐应助stars采纳,获得10
1秒前
2秒前
7777发布了新的文献求助10
2秒前
4秒前
CATH发布了新的文献求助10
5秒前
DAI应助ceeray23采纳,获得20
6秒前
布丁宝完成签到,获得积分10
7秒前
9秒前
tramp应助jwj采纳,获得10
9秒前
共享精神应助jwj采纳,获得10
9秒前
10秒前
犹豫钥匙完成签到,获得积分10
11秒前
stars发布了新的文献求助10
15秒前
17秒前
诚心的初露完成签到,获得积分10
17秒前
完美世界应助AWGTT采纳,获得10
18秒前
科研通AI5应助精明的眼神采纳,获得10
19秒前
高贵靖荷发布了新的文献求助10
20秒前
22秒前
22秒前
WF发布了新的文献求助10
23秒前
程昱完成签到,获得积分10
25秒前
Avery发布了新的文献求助10
26秒前
26秒前
我是老大应助吴国培采纳,获得10
27秒前
Jasper应助清爽老九采纳,获得50
27秒前
xlbn发布了新的文献求助10
27秒前
精明的眼神完成签到,获得积分10
30秒前
31秒前
31秒前
31秒前
WF完成签到,获得积分10
34秒前
朴实子骞完成签到 ,获得积分10
35秒前
NexusExplorer应助zhi采纳,获得10
36秒前
42秒前
43秒前
科研通AI5应助Cc采纳,获得10
46秒前
agrlook发布了新的文献求助10
47秒前
52秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733221
求助须知:如何正确求助?哪些是违规求助? 3277380
关于积分的说明 10002200
捐赠科研通 2993215
什么是DOI,文献DOI怎么找? 1642553
邀请新用户注册赠送积分活动 780522
科研通“疑难数据库(出版商)”最低求助积分说明 748867