Efficient Automatic Detection of Uterine Fibroids Based on the Scalable EfficientDet

子宫肌瘤 不育 计算机科学 可扩展性 医学 超声波 放射科 妇科 人工智能 怀孕 生物 遗传学 数据库
作者
T. H. Yang,Ping Li,Peizhong Liu
标识
DOI:10.1109/asid56930.2022.9996062
摘要

Uterine fibroids refer to benign tumors formed by uterine smooth muscle tissue hyperplasia, high frequency in women between 30 and 50 years old. By the age of 50 years, 80% of women have one or more uterine fibroids, and about half of these patients are symptomatic and in need of treatment. It's ranking the third highest incidence of all gynecological diseases. Generally, it is a benign tumor, but it can also have certain effects on women's bodies, such as causing infertility. Early detection and treatment are essential measures to reduce morbidity. Ultrasound is the preferred imaging method, and with the continuous development of deep learning in the field of medical image analysis, many applications related to object detection have good performance. Computer-assisted diagnosis can further solve the subjective uncontrollability problem caused by different doctors' reading films. Because doctors' inexperience and fatigue can reduce the diagnostic accuracy of uterine fibroids, this paper proposes a scalable EfficientDet to detect the ultrasound images of uterine fibroids and uses the Convolutional Neural Network (CNN) to extract their features. The backbone network uses EfficientNet, and then it is used together with BiFPN to improve the accuracy of the model. This method can not only benefit non-professional ultrasonologists but also provide sufficient auxiliary diagnostic effects for high-quality ultrasonologists to provide a reliable basis for future treatment and surgical resection. Finally, the effectiveness of this method is experimentally compared with other existing methods. Our method has an average accuracy of 98.88% and an f1-score of 98%. We demonstrate that the methods of this study are superior to other neural networks. And it can bring sufficient benefits to ultrasonologists. We summarize and analyze various detection algorithms, and discuss their possible future research hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助wellyou采纳,获得10
2秒前
风中的向卉完成签到 ,获得积分10
5秒前
Mp4完成签到 ,获得积分10
5秒前
凌兰完成签到 ,获得积分10
5秒前
plain完成签到,获得积分10
6秒前
陌上花开完成签到,获得积分10
7秒前
8秒前
fg2477完成签到,获得积分10
9秒前
忙碌的数学人完成签到,获得积分10
9秒前
情怀应助Engen采纳,获得10
9秒前
HJJHJH完成签到,获得积分10
11秒前
Bob发布了新的文献求助10
12秒前
13秒前
14秒前
HJJHJH发布了新的文献求助50
15秒前
JW完成签到,获得积分10
15秒前
wanci应助张参采纳,获得10
16秒前
谦让的西装完成签到 ,获得积分10
17秒前
李演员完成签到,获得积分10
18秒前
fei菲飞完成签到,获得积分10
18秒前
20秒前
Zhaowx完成签到,获得积分10
20秒前
Theprisoners完成签到,获得积分0
20秒前
木子发布了新的文献求助30
20秒前
20秒前
下课了吧完成签到,获得积分10
21秒前
丘比特应助xialuoke采纳,获得10
22秒前
zgt01发布了新的文献求助10
24秒前
linfordlu完成签到,获得积分0
24秒前
清浅发布了新的文献求助10
25秒前
风趣的涵柏完成签到,获得积分10
26秒前
28秒前
Chen完成签到 ,获得积分10
29秒前
30秒前
木樨完成签到,获得积分10
31秒前
科研顺利完成签到,获得积分10
32秒前
Bin完成签到,获得积分10
33秒前
gszy1975发布了新的文献求助10
33秒前
十曰发布了新的文献求助10
34秒前
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022