Efficient Automatic Detection of Uterine Fibroids Based on the Scalable EfficientDet

子宫肌瘤 不育 计算机科学 可扩展性 医学 超声波 放射科 妇科 人工智能 怀孕 生物 遗传学 数据库
作者
T. H. Yang,Ping Li,Peizhong Liu
标识
DOI:10.1109/asid56930.2022.9996062
摘要

Uterine fibroids refer to benign tumors formed by uterine smooth muscle tissue hyperplasia, high frequency in women between 30 and 50 years old. By the age of 50 years, 80% of women have one or more uterine fibroids, and about half of these patients are symptomatic and in need of treatment. It's ranking the third highest incidence of all gynecological diseases. Generally, it is a benign tumor, but it can also have certain effects on women's bodies, such as causing infertility. Early detection and treatment are essential measures to reduce morbidity. Ultrasound is the preferred imaging method, and with the continuous development of deep learning in the field of medical image analysis, many applications related to object detection have good performance. Computer-assisted diagnosis can further solve the subjective uncontrollability problem caused by different doctors' reading films. Because doctors' inexperience and fatigue can reduce the diagnostic accuracy of uterine fibroids, this paper proposes a scalable EfficientDet to detect the ultrasound images of uterine fibroids and uses the Convolutional Neural Network (CNN) to extract their features. The backbone network uses EfficientNet, and then it is used together with BiFPN to improve the accuracy of the model. This method can not only benefit non-professional ultrasonologists but also provide sufficient auxiliary diagnostic effects for high-quality ultrasonologists to provide a reliable basis for future treatment and surgical resection. Finally, the effectiveness of this method is experimentally compared with other existing methods. Our method has an average accuracy of 98.88% and an f1-score of 98%. We demonstrate that the methods of this study are superior to other neural networks. And it can bring sufficient benefits to ultrasonologists. We summarize and analyze various detection algorithms, and discuss their possible future research hotspots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orrrr完成签到,获得积分20
刚刚
刚刚
刚刚
三七发布了新的文献求助10
刚刚
1秒前
2秒前
于啊发布了新的文献求助10
2秒前
3秒前
充电宝应助MWY采纳,获得10
3秒前
4秒前
江xiaoyu小鱼完成签到,获得积分10
4秒前
科研通AI2S应助嘉嘉sone采纳,获得10
4秒前
4秒前
6秒前
星辰大海应助个性的荆采纳,获得10
6秒前
永远永远完成签到,获得积分10
6秒前
Zureil完成签到,获得积分10
6秒前
科研通AI6应助yutou采纳,获得10
6秒前
爆米花应助过时的明杰采纳,获得10
7秒前
传奇3应助上官老师采纳,获得10
7秒前
7秒前
靓丽的山灵完成签到,获得积分10
7秒前
7秒前
大梦龟棠完成签到,获得积分10
7秒前
7秒前
楊子发布了新的文献求助10
7秒前
活泼的牛青完成签到 ,获得积分10
7秒前
fable发布了新的文献求助10
8秒前
老A发布了新的文献求助10
9秒前
小杨完成签到,获得积分10
9秒前
机智的芷天完成签到,获得积分20
9秒前
自然冬卉完成签到 ,获得积分10
10秒前
11秒前
于啊完成签到,获得积分10
11秒前
12秒前
Msure发布了新的文献求助10
12秒前
12秒前
科研通AI6应助Annlucy采纳,获得10
13秒前
科研通AI2S应助Denmark采纳,获得10
13秒前
隐形曼青应助黄家康采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790