亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Automatic Detection of Uterine Fibroids Based on the Scalable EfficientDet

子宫肌瘤 不育 计算机科学 可扩展性 医学 超声波 放射科 妇科 人工智能 怀孕 生物 遗传学 数据库
作者
T. H. Yang,Ping Li,Peizhong Liu
标识
DOI:10.1109/asid56930.2022.9996062
摘要

Uterine fibroids refer to benign tumors formed by uterine smooth muscle tissue hyperplasia, high frequency in women between 30 and 50 years old. By the age of 50 years, 80% of women have one or more uterine fibroids, and about half of these patients are symptomatic and in need of treatment. It's ranking the third highest incidence of all gynecological diseases. Generally, it is a benign tumor, but it can also have certain effects on women's bodies, such as causing infertility. Early detection and treatment are essential measures to reduce morbidity. Ultrasound is the preferred imaging method, and with the continuous development of deep learning in the field of medical image analysis, many applications related to object detection have good performance. Computer-assisted diagnosis can further solve the subjective uncontrollability problem caused by different doctors' reading films. Because doctors' inexperience and fatigue can reduce the diagnostic accuracy of uterine fibroids, this paper proposes a scalable EfficientDet to detect the ultrasound images of uterine fibroids and uses the Convolutional Neural Network (CNN) to extract their features. The backbone network uses EfficientNet, and then it is used together with BiFPN to improve the accuracy of the model. This method can not only benefit non-professional ultrasonologists but also provide sufficient auxiliary diagnostic effects for high-quality ultrasonologists to provide a reliable basis for future treatment and surgical resection. Finally, the effectiveness of this method is experimentally compared with other existing methods. Our method has an average accuracy of 98.88% and an f1-score of 98%. We demonstrate that the methods of this study are superior to other neural networks. And it can bring sufficient benefits to ultrasonologists. We summarize and analyze various detection algorithms, and discuss their possible future research hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
情怀应助科研通管家采纳,获得10
31秒前
1分钟前
Dc发布了新的文献求助10
1分钟前
Dc完成签到,获得积分10
1分钟前
1分钟前
幽默平安发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
小禾一定行完成签到 ,获得积分10
3分钟前
inkoin发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
inkoin完成签到,获得积分10
4分钟前
4分钟前
积极的台灯应助Akitten采纳,获得10
5分钟前
隐形曼青应助务实书包采纳,获得10
5分钟前
5分钟前
5分钟前
爱思考的小笨笨完成签到,获得积分10
6分钟前
GingerF应助科研通管家采纳,获得50
6分钟前
GingerF应助科研通管家采纳,获得50
6分钟前
上官若男应助闫雪采纳,获得10
6分钟前
6分钟前
6分钟前
Akitten发布了新的文献求助10
7分钟前
7分钟前
大写的LV完成签到 ,获得积分10
7分钟前
ffff完成签到 ,获得积分10
7分钟前
zsmj23完成签到 ,获得积分0
8分钟前
Owen应助科研通管家采纳,获得10
8分钟前
Owen应助hongtao采纳,获得10
8分钟前
8分钟前
哈哈哈完成签到 ,获得积分10
8分钟前
9分钟前
liu完成签到 ,获得积分10
9分钟前
33发布了新的文献求助10
10分钟前
10分钟前
阿金啊发布了新的文献求助10
10分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990219
求助须知:如何正确求助?哪些是违规求助? 3532146
关于积分的说明 11256472
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805190
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234