Efficient Automatic Detection of Uterine Fibroids Based on the Scalable EfficientDet

子宫肌瘤 不育 计算机科学 可扩展性 医学 超声波 放射科 妇科 人工智能 怀孕 生物 遗传学 数据库
作者
T. H. Yang,Ping Li,Peizhong Liu
标识
DOI:10.1109/asid56930.2022.9996062
摘要

Uterine fibroids refer to benign tumors formed by uterine smooth muscle tissue hyperplasia, high frequency in women between 30 and 50 years old. By the age of 50 years, 80% of women have one or more uterine fibroids, and about half of these patients are symptomatic and in need of treatment. It's ranking the third highest incidence of all gynecological diseases. Generally, it is a benign tumor, but it can also have certain effects on women's bodies, such as causing infertility. Early detection and treatment are essential measures to reduce morbidity. Ultrasound is the preferred imaging method, and with the continuous development of deep learning in the field of medical image analysis, many applications related to object detection have good performance. Computer-assisted diagnosis can further solve the subjective uncontrollability problem caused by different doctors' reading films. Because doctors' inexperience and fatigue can reduce the diagnostic accuracy of uterine fibroids, this paper proposes a scalable EfficientDet to detect the ultrasound images of uterine fibroids and uses the Convolutional Neural Network (CNN) to extract their features. The backbone network uses EfficientNet, and then it is used together with BiFPN to improve the accuracy of the model. This method can not only benefit non-professional ultrasonologists but also provide sufficient auxiliary diagnostic effects for high-quality ultrasonologists to provide a reliable basis for future treatment and surgical resection. Finally, the effectiveness of this method is experimentally compared with other existing methods. Our method has an average accuracy of 98.88% and an f1-score of 98%. We demonstrate that the methods of this study are superior to other neural networks. And it can bring sufficient benefits to ultrasonologists. We summarize and analyze various detection algorithms, and discuss their possible future research hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大头完成签到,获得积分10
2秒前
2秒前
奥特曼关注了科研通微信公众号
4秒前
YYJ发布了新的文献求助10
4秒前
Ren应助girl采纳,获得10
4秒前
留胡子的紫槐完成签到,获得积分10
6秒前
顾矜应助好想走到伯纳乌采纳,获得10
7秒前
8秒前
Skuld发布了新的文献求助10
9秒前
欧维完成签到 ,获得积分10
11秒前
11秒前
LJ完成签到 ,获得积分10
14秒前
代码小白发布了新的文献求助10
14秒前
不回首发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
17秒前
奥特曼发布了新的文献求助10
18秒前
Mandy发布了新的文献求助10
18秒前
张菁完成签到,获得积分10
19秒前
寻悦完成签到,获得积分10
20秒前
薄荷惠完成签到,获得积分10
22秒前
木木应助魁梧的向薇采纳,获得10
28秒前
ding应助寒冷的咖啡采纳,获得10
28秒前
阿钉完成签到,获得积分10
30秒前
34秒前
研友_VZG7GZ应助刘浩营采纳,获得10
34秒前
35秒前
传奇3应助@@@采纳,获得10
35秒前
38秒前
flameWei发布了新的文献求助10
38秒前
41秒前
科研通AI2S应助水流众生采纳,获得10
41秒前
45秒前
45秒前
45秒前
慕青应助平常的元蝶采纳,获得10
51秒前
善学以致用应助Skuld采纳,获得10
51秒前
chrainy发布了新的文献求助10
51秒前
CyrusSo524应助黎乐荷采纳,获得10
51秒前
刘浩营发布了新的文献求助10
52秒前
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068