Efficient Automatic Detection of Uterine Fibroids Based on the Scalable EfficientDet

子宫肌瘤 不育 计算机科学 可扩展性 医学 超声波 放射科 妇科 人工智能 怀孕 生物 遗传学 数据库
作者
T. H. Yang,Ping Li,Peizhong Liu
标识
DOI:10.1109/asid56930.2022.9996062
摘要

Uterine fibroids refer to benign tumors formed by uterine smooth muscle tissue hyperplasia, high frequency in women between 30 and 50 years old. By the age of 50 years, 80% of women have one or more uterine fibroids, and about half of these patients are symptomatic and in need of treatment. It's ranking the third highest incidence of all gynecological diseases. Generally, it is a benign tumor, but it can also have certain effects on women's bodies, such as causing infertility. Early detection and treatment are essential measures to reduce morbidity. Ultrasound is the preferred imaging method, and with the continuous development of deep learning in the field of medical image analysis, many applications related to object detection have good performance. Computer-assisted diagnosis can further solve the subjective uncontrollability problem caused by different doctors' reading films. Because doctors' inexperience and fatigue can reduce the diagnostic accuracy of uterine fibroids, this paper proposes a scalable EfficientDet to detect the ultrasound images of uterine fibroids and uses the Convolutional Neural Network (CNN) to extract their features. The backbone network uses EfficientNet, and then it is used together with BiFPN to improve the accuracy of the model. This method can not only benefit non-professional ultrasonologists but also provide sufficient auxiliary diagnostic effects for high-quality ultrasonologists to provide a reliable basis for future treatment and surgical resection. Finally, the effectiveness of this method is experimentally compared with other existing methods. Our method has an average accuracy of 98.88% and an f1-score of 98%. We demonstrate that the methods of this study are superior to other neural networks. And it can bring sufficient benefits to ultrasonologists. We summarize and analyze various detection algorithms, and discuss their possible future research hotspots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Ariellvv发布了新的文献求助30
2秒前
NexusExplorer应助水123采纳,获得10
2秒前
鳗鱼紊完成签到 ,获得积分10
3秒前
Lucy完成签到,获得积分10
3秒前
buno应助skr采纳,获得10
3秒前
深情安青应助独特访枫采纳,获得10
3秒前
liujunzhe应助jjf采纳,获得10
5秒前
5秒前
7秒前
Du_u20230228发布了新的文献求助50
8秒前
归尘应助kaka采纳,获得10
8秒前
9秒前
zjj发布了新的文献求助100
9秒前
王明磊完成签到 ,获得积分10
10秒前
枇杷膏完成签到,获得积分10
11秒前
hh完成签到 ,获得积分10
11秒前
若水完成签到,获得积分0
11秒前
烟花应助一个西藏采纳,获得30
12秒前
独特的凝云完成签到 ,获得积分10
12秒前
小手冰凉完成签到,获得积分10
13秒前
whx完成签到,获得积分10
14秒前
晶晶完成签到,获得积分10
14秒前
归尘应助han采纳,获得10
15秒前
大花卷完成签到,获得积分10
15秒前
小张完成签到,获得积分10
15秒前
16秒前
Gengen完成签到,获得积分10
16秒前
星星完成签到,获得积分10
16秒前
韩韩喜欢吃蛋糕完成签到,获得积分20
17秒前
ZDM6094完成签到 ,获得积分10
19秒前
19秒前
22秒前
水123发布了新的文献求助10
22秒前
23秒前
汶溢完成签到,获得积分10
23秒前
23秒前
星星发布了新的文献求助10
24秒前
科目三应助一一采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832