Efficient Automatic Detection of Uterine Fibroids Based on the Scalable EfficientDet

子宫肌瘤 不育 计算机科学 可扩展性 医学 超声波 放射科 妇科 人工智能 怀孕 生物 遗传学 数据库
作者
T. H. Yang,Ping Li,Peizhong Liu
标识
DOI:10.1109/asid56930.2022.9996062
摘要

Uterine fibroids refer to benign tumors formed by uterine smooth muscle tissue hyperplasia, high frequency in women between 30 and 50 years old. By the age of 50 years, 80% of women have one or more uterine fibroids, and about half of these patients are symptomatic and in need of treatment. It's ranking the third highest incidence of all gynecological diseases. Generally, it is a benign tumor, but it can also have certain effects on women's bodies, such as causing infertility. Early detection and treatment are essential measures to reduce morbidity. Ultrasound is the preferred imaging method, and with the continuous development of deep learning in the field of medical image analysis, many applications related to object detection have good performance. Computer-assisted diagnosis can further solve the subjective uncontrollability problem caused by different doctors' reading films. Because doctors' inexperience and fatigue can reduce the diagnostic accuracy of uterine fibroids, this paper proposes a scalable EfficientDet to detect the ultrasound images of uterine fibroids and uses the Convolutional Neural Network (CNN) to extract their features. The backbone network uses EfficientNet, and then it is used together with BiFPN to improve the accuracy of the model. This method can not only benefit non-professional ultrasonologists but also provide sufficient auxiliary diagnostic effects for high-quality ultrasonologists to provide a reliable basis for future treatment and surgical resection. Finally, the effectiveness of this method is experimentally compared with other existing methods. Our method has an average accuracy of 98.88% and an f1-score of 98%. We demonstrate that the methods of this study are superior to other neural networks. And it can bring sufficient benefits to ultrasonologists. We summarize and analyze various detection algorithms, and discuss their possible future research hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_08ozgZ完成签到,获得积分10
1秒前
Orange应助KUqun采纳,获得10
1秒前
1秒前
fsw发布了新的文献求助10
2秒前
2秒前
lujin完成签到,获得积分10
3秒前
Marciu33应助小王采纳,获得10
3秒前
特来骑发布了新的文献求助10
3秒前
张凌志发布了新的文献求助10
4秒前
4秒前
tczw667完成签到,获得积分10
5秒前
5秒前
勤恳慕蕊发布了新的文献求助20
5秒前
hqz发布了新的文献求助10
6秒前
tcmlida发布了新的文献求助10
7秒前
Yu发布了新的文献求助10
7秒前
warry完成签到 ,获得积分10
8秒前
luluyang完成签到,获得积分10
10秒前
Orange应助麦麦泰采纳,获得10
10秒前
10秒前
斯文败类应助喵喵采纳,获得10
11秒前
11秒前
隐形曼青应助kevin采纳,获得10
13秒前
Esther发布了新的文献求助10
13秒前
特来骑完成签到,获得积分10
13秒前
蜡笔小新完成签到 ,获得积分10
13秒前
高梦祥完成签到,获得积分10
14秒前
领导范儿应助fsw采纳,获得10
14秒前
Akim应助早日毕业脱离苦海采纳,获得10
14秒前
14秒前
15秒前
15秒前
华子的五A替身完成签到,获得积分10
15秒前
刘保彤发布了新的文献求助10
15秒前
15秒前
15秒前
拼搏从灵完成签到,获得积分10
16秒前
16秒前
卡尔发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017460
求助须知:如何正确求助?哪些是违规求助? 4257073
关于积分的说明 13267567
捐赠科研通 4061370
什么是DOI,文献DOI怎么找? 2221225
邀请新用户注册赠送积分活动 1230555
关于科研通互助平台的介绍 1153161