清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficient Automatic Detection of Uterine Fibroids Based on the Scalable EfficientDet

子宫肌瘤 不育 计算机科学 可扩展性 医学 超声波 放射科 妇科 人工智能 怀孕 生物 遗传学 数据库
作者
T. H. Yang,Ping Li,Peizhong Liu
标识
DOI:10.1109/asid56930.2022.9996062
摘要

Uterine fibroids refer to benign tumors formed by uterine smooth muscle tissue hyperplasia, high frequency in women between 30 and 50 years old. By the age of 50 years, 80% of women have one or more uterine fibroids, and about half of these patients are symptomatic and in need of treatment. It's ranking the third highest incidence of all gynecological diseases. Generally, it is a benign tumor, but it can also have certain effects on women's bodies, such as causing infertility. Early detection and treatment are essential measures to reduce morbidity. Ultrasound is the preferred imaging method, and with the continuous development of deep learning in the field of medical image analysis, many applications related to object detection have good performance. Computer-assisted diagnosis can further solve the subjective uncontrollability problem caused by different doctors' reading films. Because doctors' inexperience and fatigue can reduce the diagnostic accuracy of uterine fibroids, this paper proposes a scalable EfficientDet to detect the ultrasound images of uterine fibroids and uses the Convolutional Neural Network (CNN) to extract their features. The backbone network uses EfficientNet, and then it is used together with BiFPN to improve the accuracy of the model. This method can not only benefit non-professional ultrasonologists but also provide sufficient auxiliary diagnostic effects for high-quality ultrasonologists to provide a reliable basis for future treatment and surgical resection. Finally, the effectiveness of this method is experimentally compared with other existing methods. Our method has an average accuracy of 98.88% and an f1-score of 98%. We demonstrate that the methods of this study are superior to other neural networks. And it can bring sufficient benefits to ultrasonologists. We summarize and analyze various detection algorithms, and discuss their possible future research hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东郭凝蝶完成签到 ,获得积分10
19秒前
宇文非笑完成签到 ,获得积分0
53秒前
57秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
1分钟前
apckkk完成签到 ,获得积分10
2分钟前
2分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
默默雪旋完成签到 ,获得积分10
2分钟前
坚强的铅笔完成签到 ,获得积分10
2分钟前
wdy111应助wbh采纳,获得20
2分钟前
无限晓蓝完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
XIA完成签到 ,获得积分10
3分钟前
喜悦的香之完成签到 ,获得积分10
3分钟前
嘻嘻哈哈啊完成签到 ,获得积分10
3分钟前
科研佟完成签到 ,获得积分10
3分钟前
Skywalk满天星完成签到,获得积分10
3分钟前
心想事成完成签到 ,获得积分10
3分钟前
Lny发布了新的文献求助10
4分钟前
通科研完成签到 ,获得积分10
4分钟前
在水一方应助飞翔的企鹅采纳,获得10
4分钟前
creep2020完成签到,获得积分10
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
少年完成签到,获得积分10
4分钟前
liuzhigang完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
榆木小鸟完成签到 ,获得积分10
5分钟前
雪流星完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
蒙面侠完成签到 ,获得积分10
6分钟前
CC发布了新的文献求助10
6分钟前
哈哈哈完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990603
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234