亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning for the early prediction of sepsis-associated ARDS in the ICU and identification of clinical phenotypes with differential responses to treatment

急性呼吸窘迫综合征 医学 败血症 重症监护室 接收机工作特性 重症监护医学 重症监护 逻辑回归 人口 急性呼吸窘迫 内科学 环境卫生
作者
Yu Bai,Jingen Xia,Xu Huang,Sheng-Song Chen,Qingyuan Zhan
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:13 被引量:15
标识
DOI:10.3389/fphys.2022.1050849
摘要

Background: An early diagnosis model with clinical phenotype classification is key for the early identification and precise treatment of sepsis-associated acute respiratory distress syndrome (ARDS). This study aimed to: 1) build a machine learning diagnostic model for patients with sepsis-associated ARDS using easily accessible early clinical indicators, 2) conduct rapid classification of clinical phenotypes in this population, and 3) explore the differences in clinical characteristics, outcomes, and treatment responses of different phenotypes. Methods: This study is based on data from the Telehealth Intensive Care Unit (eICU) and Medical Information Mart for Intensive Care IV (MIMIC-IV). We trained and tested the early diagnostic model of sepsis-associated ARDS patients in the eICU. We used key predictive indicators to cluster sepsis-associated ARDS patients and determine the characteristics and clinical outcomes of different phenotypes, as well to explore the differences of in-hospital mortality among different the positive end-expiratory pressure (PEEP) levels in different phenotypes. These results are verified in MIMIC-IV to evaluate whether they are repeatable. Results: Among the diagnostic models constructed in 19,249 sepsis patients and 5,947 sepsis-associated ARDS patients, the AdaBoost (Decision Tree) model achieved the best performance with an area under the receiver operating characteristic curve (AUC) of 0.895, which is higher than that of the traditional Logistic Regression model (Z = -2.40,p = 0.013), and the accuracy of 70.06%, sensitivity of 78.11% and specificity of 78.74%. We simultaneously identified three sepsis-associated ARDS phenotypes. Cluster 0 (n = 3,669) had the lowest in-hospital mortality rate (6.51%) and fewer laboratory abnormalities (lower WBC (median:15.000 K/mcL), lower blood glucose (median:158.000 mg/dl), lower creatinine (median:1.200 mg/dl), lower lactic acid (median:3.000 mmol/L); p < 0.001). Cluster 1 (n = 1,554) had the highest in-hospital mortality rate (75.29%) and the most laboratory abnormalities (higher WBC (median:18.300 K/mcL), higher blood glucose (median:188.000 mg/dl), higher creatinine (median:2.300 mg/dl), higher lactic acid (median:3.900 mmol/L); p < 0.001). Cluster 2 (n = 724) had the most complex condition, with a moderate in-hospital mortality rate (29.7%) and the longest intensive care unit stay. In Clusters 0 and 1, patients with high PEEP had higher in-hospital mortality rate than those with low PEEP, but the opposite trend was seen in Cluster 2. These results were repeatable in 11,935 patients with sepsis and 2,699 patients with sepsis-associated ARDS patients in the MIMIC-IV cohort. Conclusion: A machine learning diagnostic model of sepsis-associated ARDS patients was established. Three phenotypes with different clinical features and outcomes were clustered, and these had different therapeutic responses. These findings are helpful for the early and rapid identification of sepsis-associated ARDS patients and their precise individualized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feiCheung完成签到 ,获得积分10
5秒前
1分钟前
冷静新烟发布了新的文献求助10
1分钟前
Meredith完成签到,获得积分10
1分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
xwz626完成签到,获得积分10
5分钟前
dwl完成签到 ,获得积分10
5分钟前
6分钟前
喜悦的飞飞完成签到,获得积分10
7分钟前
研友_Lw46dn发布了新的文献求助10
8分钟前
中西西完成签到 ,获得积分10
8分钟前
糍粑鱼完成签到,获得积分20
9分钟前
糍粑鱼发布了新的文献求助10
9分钟前
研友_Lw46dn发布了新的文献求助10
9分钟前
arsenal完成签到 ,获得积分10
9分钟前
科目三应助陈媛采纳,获得10
9分钟前
鲍文启完成签到 ,获得积分10
10分钟前
12分钟前
陈媛发布了新的文献求助10
12分钟前
手帕很忙完成签到,获得积分10
12分钟前
lucfer完成签到 ,获得积分10
12分钟前
zxq1996完成签到 ,获得积分10
13分钟前
14分钟前
研友_Lw46dn完成签到,获得积分20
15分钟前
16分钟前
194711发布了新的文献求助10
17分钟前
Wilson完成签到 ,获得积分10
17分钟前
桐桐应助PDY采纳,获得10
18分钟前
暮迟途远完成签到,获得积分10
19分钟前
20分钟前
PDY发布了新的文献求助10
20分钟前
彩色莞完成签到 ,获得积分10
20分钟前
PDY完成签到,获得积分10
20分钟前
wsh完成签到 ,获得积分10
20分钟前
21分钟前
oaoalaa完成签到 ,获得积分10
22分钟前
kaka完成签到,获得积分10
23分钟前
ddd完成签到 ,获得积分10
23分钟前
笨蛋小狗梦想为春日半岛蹦极完成签到,获得积分10
24分钟前
鳗鱼鱼完成签到 ,获得积分10
25分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846069
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757