枝晶(数学)
材料科学
形态学(生物学)
金属锂
化学物理
阳极
Crystal(编程语言)
扩散
晶界
纳米技术
凝聚态物理
计算机科学
复合材料
几何学
热力学
物理化学
电极
物理
微观结构
化学
生物
程序设计语言
遗传学
数学
作者
Wentao Zhang,Mouyi Weng,Mingzheng Zhang,Yaokun Ye,Zhefeng Chen,Simo Li,Shunning Li,Feng Pan,Lin‐wang Wang
标识
DOI:10.1002/aenm.202202892
摘要
Abstract Solving the dendrite growth problem is critical for the development of lithium metal anode for high‐capacity batteries. In this work, a machine learning force field model in combination with a self‐consistent continuum solvation model is used to simulate the morphology evolution of dendrites in a working electrolyte environment. The dynamic evolution of the dendrite morphology can be described in two stages. In the first stage, the energy reduction of the surface atoms induces localized reorientation of the originally single‐crystal dendrite and the formation of multiple domains. In the second stage, the energy reduction of internal atoms drives the migration of grain boundaries and the slipping of crystal domains. The results indicate that the formation of multiple domains might help to stabilize the dendrite, as a higher temperature trajectory in a single crystal dendrite without domains shows a higher dendrite collapsing rate. Several possible modes of morphological evolutions are also investigated, including surface diffusion of adatoms and configuration twists from [100] exposed surfaces to [110] exposed surfaces. In summary, reducing the surface and grain boundary energy drives the morphology evolution. Based on the analysis of these driving forces, some guidelines are suggested for designing a more stable lithium metal anode.
科研通智能强力驱动
Strongly Powered by AbleSci AI