A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀谷南发布了新的文献求助10
刚刚
刚刚
满意的甜瓜完成签到,获得积分10
刚刚
打打应助夕子爱科研采纳,获得10
刚刚
科研通AI6应助妥妥采纳,获得10
1秒前
从容凝安完成签到,获得积分10
1秒前
张旭完成签到,获得积分10
2秒前
潇洒愚志完成签到,获得积分10
2秒前
Xcd完成签到 ,获得积分10
3秒前
5秒前
安平完成签到,获得积分10
6秒前
感动满天完成签到,获得积分10
6秒前
科研通AI6应助ayi采纳,获得10
6秒前
J_Xu完成签到 ,获得积分10
7秒前
清秀谷南完成签到,获得积分10
7秒前
猪猪hero应助矮小的断秋采纳,获得10
8秒前
Wanfeng应助张俊扬采纳,获得200
9秒前
9秒前
10秒前
石大李克发布了新的文献求助10
10秒前
wanci应助热心幻天采纳,获得10
11秒前
体贴皮卡丘完成签到 ,获得积分10
11秒前
老天师一巴掌完成签到 ,获得积分10
11秒前
13秒前
LewisAcid应助gloval采纳,获得50
13秒前
SCI朝我来完成签到,获得积分10
14秒前
wuxunxun2015发布了新的文献求助10
14秒前
刘欣发布了新的文献求助10
15秒前
酷波er应助BananaL采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
瑾瑜匿瑕发布了新的文献求助20
16秒前
eric发布了新的文献求助10
16秒前
16秒前
18秒前
Orange应助popura_YY采纳,获得10
18秒前
19秒前
心肝宝贝甜蜜饯完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613310
求助须知:如何正确求助?哪些是违规求助? 4698482
关于积分的说明 14898087
捐赠科研通 4735844
什么是DOI,文献DOI怎么找? 2546985
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473545