已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
2秒前
科研通AI6应助Tulipe采纳,获得10
4秒前
5秒前
永远完成签到,获得积分10
9秒前
阿狸发布了新的文献求助10
10秒前
Akim应助开放的千青采纳,获得10
11秒前
12秒前
科研通AI6应助火星上仰采纳,获得10
12秒前
14秒前
14秒前
16秒前
咕哒猫应助佛光辉采纳,获得10
18秒前
lutuantuan完成签到,获得积分10
18秒前
yznfly应助ljq采纳,获得200
20秒前
20秒前
阿狸完成签到,获得积分10
21秒前
Ykaor完成签到 ,获得积分10
21秒前
23秒前
皮皮完成签到 ,获得积分10
23秒前
ljq完成签到,获得积分10
24秒前
Rye发布了新的文献求助10
29秒前
梦梦完成签到,获得积分10
31秒前
舒晓芸完成签到,获得积分20
32秒前
32秒前
33秒前
七七完成签到 ,获得积分10
35秒前
解你所忧完成签到 ,获得积分10
35秒前
冷酷哈密瓜完成签到,获得积分10
37秒前
39秒前
欧尼酱完成签到 ,获得积分10
39秒前
闪闪书桃完成签到,获得积分10
43秒前
Z100完成签到,获得积分10
44秒前
46秒前
旺仔先生完成签到,获得积分0
47秒前
49秒前
热情高跟鞋完成签到,获得积分10
49秒前
K先生完成签到 ,获得积分20
50秒前
共享精神应助小南采纳,获得10
51秒前
研友_nEWRJ8完成签到,获得积分10
52秒前
思源应助佛光辉采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910