A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呐呐呐发布了新的文献求助10
1秒前
1秒前
召唤兽发布了新的文献求助10
1秒前
欢喜的跳跳糖完成签到,获得积分10
1秒前
1秒前
SLY完成签到 ,获得积分10
1秒前
海阔天空完成签到,获得积分20
2秒前
2秒前
yby发布了新的文献求助10
2秒前
2秒前
yqcj59完成签到,获得积分10
2秒前
wanghui完成签到 ,获得积分10
3秒前
3秒前
大模型应助白日焰火采纳,获得30
3秒前
3秒前
3秒前
alang完成签到,获得积分20
3秒前
3秒前
3秒前
小胖子完成签到 ,获得积分10
4秒前
Dmx完成签到,获得积分10
5秒前
烛黎发布了新的文献求助10
5秒前
陈梓锋完成签到 ,获得积分10
5秒前
池haojie发布了新的文献求助30
5秒前
bless完成签到,获得积分10
5秒前
斧王应助欢喜的跳跳糖采纳,获得10
6秒前
海阔天空发布了新的文献求助10
6秒前
华凯发布了新的文献求助10
6秒前
overfly完成签到,获得积分20
6秒前
linliqing完成签到,获得积分10
6秒前
6秒前
亦玉发布了新的文献求助10
7秒前
ninomae完成签到 ,获得积分10
7秒前
yy发布了新的文献求助150
7秒前
冷冷子发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
自信南霜完成签到 ,获得积分10
8秒前
流沙无言完成签到 ,获得积分10
8秒前
mmain发布了新的文献求助10
8秒前
uil发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433638
求助须知:如何正确求助?哪些是违规求助? 4545984
关于积分的说明 14200351
捐赠科研通 4465899
什么是DOI,文献DOI怎么找? 2447688
邀请新用户注册赠送积分活动 1438812
关于科研通互助平台的介绍 1415783