A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier BV]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuiiuy发布了新的文献求助10
2秒前
背后海亦应助sjy采纳,获得20
3秒前
4秒前
慕青应助张玉采纳,获得10
4秒前
小叶子发布了新的文献求助10
4秒前
清风完成签到,获得积分10
5秒前
共享精神应助dingyu24采纳,获得10
5秒前
m(_._)m发布了新的文献求助10
8秒前
我是老大应助devilfish13采纳,获得10
8秒前
小叶子完成签到,获得积分10
10秒前
11秒前
欧冶冶发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助100
16秒前
SAIL完成签到 ,获得积分10
26秒前
30秒前
30秒前
fixing发布了新的文献求助10
30秒前
35秒前
药化完成签到,获得积分20
35秒前
柒柒完成签到,获得积分10
36秒前
38秒前
天玄一刀发布了新的文献求助10
40秒前
忧伤的宝马完成签到,获得积分10
40秒前
40秒前
文静曼香完成签到 ,获得积分10
42秒前
abtitw完成签到,获得积分10
42秒前
42秒前
45秒前
46秒前
47秒前
完美世界应助天玄一刀采纳,获得10
47秒前
科研通AI2S应助guanze采纳,获得10
48秒前
文静曼香关注了科研通微信公众号
48秒前
48秒前
49秒前
司空元正发布了新的文献求助10
51秒前
LEAOMIC发布了新的文献求助10
51秒前
devilfish13发布了新的文献求助10
53秒前
zozo发布了新的文献求助10
55秒前
Belinda发布了新的文献求助10
55秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971655
求助须知:如何正确求助?哪些是违规求助? 3516320
关于积分的说明 11181963
捐赠科研通 3251445
什么是DOI,文献DOI怎么找? 1795889
邀请新用户注册赠送积分活动 876131
科研通“疑难数据库(出版商)”最低求助积分说明 805266