A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier BV]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五六七完成签到,获得积分10
刚刚
周少完成签到,获得积分10
刚刚
兴奋的若菱完成签到 ,获得积分10
刚刚
幸福广山完成签到,获得积分10
2秒前
HMethod完成签到 ,获得积分10
4秒前
Y123完成签到,获得积分10
4秒前
5秒前
ersan完成签到,获得积分10
6秒前
Hello应助nkmenghan采纳,获得30
7秒前
7秒前
7秒前
粗心的听安完成签到,获得积分10
7秒前
念姬完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
指哪打哪完成签到,获得积分10
10秒前
10秒前
静静子发布了新的文献求助100
11秒前
Ray完成签到 ,获得积分10
12秒前
文静的天蓝完成签到,获得积分10
12秒前
tszjw168完成签到 ,获得积分10
13秒前
手打鱼丸完成签到 ,获得积分10
14秒前
体贴凌柏发布了新的文献求助10
14秒前
开心快乐发大财完成签到,获得积分10
16秒前
萌萌哒完成签到,获得积分10
16秒前
小龅牙吖完成签到,获得积分10
16秒前
Propitious完成签到,获得积分10
17秒前
徐先生1106完成签到,获得积分10
17秒前
Epiphany完成签到,获得积分10
18秒前
舒心的久完成签到 ,获得积分10
18秒前
闻巷雨完成签到 ,获得积分10
20秒前
北风完成签到,获得积分10
21秒前
xliiii完成签到,获得积分10
21秒前
时光倒流的鱼完成签到,获得积分10
22秒前
LL完成签到,获得积分10
22秒前
李李完成签到,获得积分20
22秒前
雨无意完成签到,获得积分10
23秒前
盛宇大天才完成签到,获得积分10
25秒前
游戏人间完成签到 ,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029