A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Baekkk完成签到,获得积分10
刚刚
ding应助阿萨十大采纳,获得10
1秒前
酒温书生完成签到,获得积分20
1秒前
小荔枝完成签到,获得积分10
1秒前
2秒前
诸葛烤鸭完成签到,获得积分10
2秒前
QMCL完成签到,获得积分0
2秒前
浮游应助慢羊羊采纳,获得10
3秒前
Jelavender完成签到,获得积分10
4秒前
高兴的半仙完成签到,获得积分10
4秒前
顾矜应助张建采纳,获得10
4秒前
姚龙完成签到 ,获得积分10
5秒前
桌球有点蔡先生完成签到 ,获得积分10
5秒前
奋斗夏真完成签到,获得积分10
5秒前
慕青应助风趣的芝麻采纳,获得10
5秒前
gene发布了新的文献求助10
5秒前
wys2493发布了新的文献求助10
6秒前
高大的储发布了新的文献求助10
6秒前
7秒前
dubo666给dubo666的求助进行了留言
7秒前
8秒前
8秒前
9秒前
9秒前
狂野的筝完成签到 ,获得积分10
10秒前
10秒前
婷刘完成签到,获得积分10
11秒前
11秒前
负责紊完成签到,获得积分10
11秒前
磊磊猪完成签到,获得积分10
11秒前
hmy发布了新的文献求助10
11秒前
hooyi完成签到,获得积分20
11秒前
知鸢完成签到,获得积分10
12秒前
小王完成签到 ,获得积分10
12秒前
鲤鱼山人完成签到 ,获得积分10
12秒前
小次之山完成签到,获得积分10
12秒前
浮游应助迷失沉寂采纳,获得10
13秒前
kook发布了新的文献求助10
13秒前
wys2493完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326643
求助须知:如何正确求助?哪些是违规求助? 4466789
关于积分的说明 13898695
捐赠科研通 4359245
什么是DOI,文献DOI怎么找? 2394512
邀请新用户注册赠送积分活动 1388021
关于科研通互助平台的介绍 1358868