A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier BV]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keri发布了新的文献求助10
刚刚
hvivi6发布了新的文献求助10
1秒前
草莓熊完成签到,获得积分20
2秒前
szk完成签到,获得积分10
2秒前
3秒前
彳亍者发布了新的文献求助10
3秒前
充电宝应助执着小熊猫采纳,获得10
4秒前
善良书蕾发布了新的文献求助10
6秒前
chao发布了新的文献求助50
7秒前
董豆豆发布了新的文献求助10
7秒前
BaBa发布了新的文献求助10
8秒前
酷炫冬日完成签到,获得积分20
9秒前
dxk发布了新的文献求助10
10秒前
10秒前
慕青应助jing2000yr采纳,获得30
11秒前
12秒前
星辰大海应助甜甜亦巧采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
丘比特应助标致谷菱采纳,获得10
13秒前
赘婿应助凯凯凯采纳,获得10
15秒前
16秒前
蓝荆发布了新的文献求助10
17秒前
田様应助朝花夕拾采纳,获得10
19秒前
keri完成签到 ,获得积分20
21秒前
kyJYbs发布了新的文献求助10
21秒前
21秒前
21秒前
端庄乐松发布了新的文献求助10
22秒前
24秒前
25秒前
爆米花应助个十百千萬采纳,获得10
26秒前
1111发布了新的文献求助10
28秒前
28秒前
CeciliaLee完成签到,获得积分20
29秒前
善学以致用应助澡雪采纳,获得10
30秒前
dong应助mostspecial采纳,获得20
32秒前
鱼香花儿完成签到,获得积分10
32秒前
忧郁人龙完成签到,获得积分10
33秒前
34秒前
Leemmy完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976107
求助须知:如何正确求助?哪些是违规求助? 3520330
关于积分的说明 11202435
捐赠科研通 3256819
什么是DOI,文献DOI怎么找? 1798504
邀请新用户注册赠送积分活动 877642
科研通“疑难数据库(出版商)”最低求助积分说明 806496