亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助cs采纳,获得10
1秒前
4秒前
Owen应助zxx采纳,获得10
10秒前
11秒前
12秒前
文静水池完成签到,获得积分10
16秒前
如意的歌曲完成签到,获得积分10
16秒前
17秒前
cs发布了新的文献求助10
17秒前
19秒前
Pluto发布了新的文献求助10
21秒前
23秒前
新晋学术小生完成签到 ,获得积分10
23秒前
山猪吃细糠完成签到 ,获得积分10
23秒前
24秒前
26秒前
白华苍松发布了新的文献求助10
29秒前
Alex应助蜡笔小欣采纳,获得30
31秒前
36秒前
CC完成签到 ,获得积分10
38秒前
zxx发布了新的文献求助10
41秒前
zss完成签到 ,获得积分10
42秒前
俭朴蜜蜂完成签到 ,获得积分10
49秒前
朴素的书琴完成签到,获得积分10
49秒前
小白t73完成签到 ,获得积分10
50秒前
怡然的扬发布了新的文献求助10
57秒前
1分钟前
潇潇发布了新的文献求助10
1分钟前
hwt10324发布了新的文献求助20
1分钟前
喜悦宫苴完成签到,获得积分10
1分钟前
俭朴听双完成签到,获得积分10
1分钟前
山川日月完成签到,获得积分10
1分钟前
1分钟前
Hustch完成签到,获得积分10
1分钟前
xzgwbh完成签到,获得积分10
1分钟前
GavinYi完成签到,获得积分10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
zxx发布了新的文献求助10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564775
求助须知:如何正确求助?哪些是违规求助? 4649470
关于积分的说明 14689004
捐赠科研通 4591451
什么是DOI,文献DOI怎么找? 2519172
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846