A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework

计算机科学 循环神经网络 人工智能 机器学习 水准点(测量) 特征选择 入侵检测系统 深度学习 人工神经网络 数据挖掘 大地测量学 地理
作者
Sydney Mambwe Kasongo
出处
期刊:Computer Communications [Elsevier]
卷期号:199: 113-125 被引量:196
标识
DOI:10.1016/j.comcom.2022.12.010
摘要

In recent years, the spike in the amount of information transmitted through communication infrastructures has increased due to the advances in technologies such as cloud computing, vehicular networks systems, the Internet of Things (IoT), etc. As a result, attackers have multiplied their efforts for the purpose of rendering network systems vulnerable. Therefore, it is of utmost importance to improve the security of those network systems. In this study, an IDS framework using Machine Learning (ML) techniques is implemented. This framework uses different types of Recurrent Neural Networks (RNNs), namely, Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple RNN. To assess the performance of the proposed IDS framework, the NSL-KDD and the UNSW-NB15 benchmark datasets are considered. Moreover, existing IDSs suffer from low test accuracy scores in detecting new attacks as the feature dimension grows. In this study, an XGBoost-based feature selection algorithm was implemented to reduce the feature space of each dataset. Following that process, 17 and 22 relevant attributes were picked from the UNSW-NB15 and NSL-KDD, respectively. The accuracy obtained through the test subsets was used as the main performance metric in conjunction with the F1-Score, the validation accuracy, and the training time (in seconds). The results showed that for the binary classification tasks using the NSL-KDD, the XGBoost-LSTM achieved the best performance with a test accuracy (TAC) of 88.13%, a validation accuracy (VAC) of 99.49% and a training time of 225.46 s. For the UNSW-NB15, the XGBoost-Simple-RNN was the most efficient model with a TAC of 87.07%. For the multiclass classification scheme, the XGBoost-LSTM achieved a TAC of 86.93% over the NSL-KDD and the XGBoost-GRU obtained a TAC of 78.40% over the UNSW-NB15 dataset. These results demonstrated that our proposed IDS framework performed optimally in comparison to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助萨尼铁塔采纳,获得10
1秒前
敏敏完成签到,获得积分10
2秒前
3秒前
dummy发布了新的文献求助10
3秒前
3秒前
4秒前
鳗鱼梦寒发布了新的文献求助30
5秒前
6秒前
汉堡包应助xu采纳,获得10
6秒前
YukiXu发布了新的文献求助10
6秒前
7秒前
青馨花语发布了新的文献求助10
7秒前
8秒前
机灵的乌冬面完成签到,获得积分10
8秒前
8秒前
9秒前
Ava应助阿氏之光采纳,获得10
9秒前
曾经大地发布了新的文献求助10
9秒前
WFWcool发布了新的文献求助30
10秒前
11秒前
萨尼铁塔发布了新的文献求助10
11秒前
Cyuan发布了新的文献求助10
12秒前
Steven发布了新的文献求助10
13秒前
顾矜应助上官采纳,获得10
13秒前
13秒前
科目三应助Y12采纳,获得10
14秒前
Jasper应助笨维采纳,获得10
14秒前
WFWcool完成签到,获得积分20
15秒前
xx发布了新的文献求助10
15秒前
不发natural不改名完成签到,获得积分10
15秒前
科研通AI6应助曾经很天真采纳,获得10
16秒前
16秒前
16秒前
萨尼铁塔完成签到,获得积分10
17秒前
鳗鱼梦寒完成签到,获得积分10
19秒前
20秒前
科目三应助雪白的青柏采纳,获得10
20秒前
shashali发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588611
求助须知:如何正确求助?哪些是违规求助? 4671642
关于积分的说明 14788202
捐赠科研通 4625797
什么是DOI,文献DOI怎么找? 2531896
邀请新用户注册赠送积分活动 1500456
关于科研通互助平台的介绍 1468324