已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early Childhood Predictors for Dental Caries: A Machine Learning Approach

医学 逻辑回归 社会心理的 牙科 接收机工作特性 儿童早期龋齿 社会经济地位 队列 口腔健康 人口 环境卫生 精神科 内科学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Bruna Brondani,Bruno Emmanuelli,Renata Saraiva Guedes,Fausto Medeiros Mendes,Thiago Machado Ardenghi
出处
期刊:Journal of Dental Research [SAGE]
卷期号:102 (9): 999-1006 被引量:7
标识
DOI:10.1177/00220345231170535
摘要

We aimed to develop and validate caries prognosis models in primary and permanent teeth after 2 and 10 y of follow-up through a machine learning (ML) approach, using predictors collected in early childhood. Data from a 10-y prospective cohort study conducted in southern Brazil were analyzed. Children aged 1 to 5 y were first examined in 2010 and reassessed in 2012 and 2020 regarding caries development. Dental caries was assessed using the Caries Detection and Assessment System (ICDAS) criteria. Demographic, socioeconomic, psychosocial, behavioral, and clinical factors were collected. ML algorithms decision tree, random forest, and extreme gradient boosting (XGBoost) were employed, along with logistic regression. The discrimination and calibration of models were verified in independent sets. From 639 children included at the baseline, we reassessed 467 (73.3%) and 428 (66.9%) children in 2012 and 2020, respectively. For all models, the area under receiver operating characteristic curve (AUC) at training and testing was above 0.70 for predicting caries in primary teeth after 2-y follow-up, with caries severity at the baseline being the strongest predictor. After 10 y, the SHAP algorithm based on XGBoost achieved an AUC higher than 0.70 in the testing set and indicated caries experience, nonuse of fluoridated toothpaste, parent education, higher frequency of sugar consumption, low frequency of visits to the relatives, and poor parents' perception of their children's oral health as top predictors for caries in permanent teeth. In conclusion, the implementation of ML shows potential for determining caries development in both primary and permanent teeth using easy-to-collect predictors in early childhood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
finerain7完成签到,获得积分10
1秒前
趙途嘵生发布了新的文献求助30
3秒前
爱可可月完成签到 ,获得积分10
5秒前
岸在海的深处完成签到 ,获得积分10
5秒前
CodeCraft应助现代唯雪采纳,获得10
6秒前
善学以致用应助gujianhua采纳,获得10
6秒前
9秒前
完美世界应助姝飞糊涂采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
13秒前
LuoYR@SZU发布了新的文献求助10
15秒前
墨墨发布了新的文献求助10
16秒前
17秒前
komisan完成签到 ,获得积分10
17秒前
genomed应助czyczy采纳,获得10
17秒前
大聪明发布了新的文献求助10
19秒前
21秒前
gujianhua发布了新的文献求助10
23秒前
24秒前
24秒前
夏蓉完成签到,获得积分10
24秒前
huanhuan完成签到 ,获得积分10
24秒前
liweiDr发布了新的文献求助10
26秒前
JamesPei应助zz采纳,获得10
27秒前
美天仙发布了新的文献求助10
29秒前
姝飞糊涂发布了新的文献求助10
30秒前
小阿博发布了新的文献求助10
30秒前
33秒前
可靠的念柏应助liweiDr采纳,获得10
33秒前
GdYOUNGRAY完成签到 ,获得积分20
36秒前
跳跃的谷雪应助姝飞糊涂采纳,获得10
37秒前
37秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139334
求助须知:如何正确求助?哪些是违规求助? 2790231
关于积分的说明 7794518
捐赠科研通 2446658
什么是DOI,文献DOI怎么找? 1301314
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109