亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Childhood Predictors for Dental Caries: A Machine Learning Approach

医学 逻辑回归 社会心理的 牙科 接收机工作特性 儿童早期龋齿 社会经济地位 队列 口腔健康 人口 环境卫生 精神科 内科学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Bruna Brondani,Bruno Emmanuelli,Renata Saraiva Guedes,Fausto Medeiros Mendes,Thiago Machado Ardenghi
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:102 (9): 999-1006 被引量:18
标识
DOI:10.1177/00220345231170535
摘要

We aimed to develop and validate caries prognosis models in primary and permanent teeth after 2 and 10 y of follow-up through a machine learning (ML) approach, using predictors collected in early childhood. Data from a 10-y prospective cohort study conducted in southern Brazil were analyzed. Children aged 1 to 5 y were first examined in 2010 and reassessed in 2012 and 2020 regarding caries development. Dental caries was assessed using the Caries Detection and Assessment System (ICDAS) criteria. Demographic, socioeconomic, psychosocial, behavioral, and clinical factors were collected. ML algorithms decision tree, random forest, and extreme gradient boosting (XGBoost) were employed, along with logistic regression. The discrimination and calibration of models were verified in independent sets. From 639 children included at the baseline, we reassessed 467 (73.3%) and 428 (66.9%) children in 2012 and 2020, respectively. For all models, the area under receiver operating characteristic curve (AUC) at training and testing was above 0.70 for predicting caries in primary teeth after 2-y follow-up, with caries severity at the baseline being the strongest predictor. After 10 y, the SHAP algorithm based on XGBoost achieved an AUC higher than 0.70 in the testing set and indicated caries experience, nonuse of fluoridated toothpaste, parent education, higher frequency of sugar consumption, low frequency of visits to the relatives, and poor parents’ perception of their children’s oral health as top predictors for caries in permanent teeth. In conclusion, the implementation of ML shows potential for determining caries development in both primary and permanent teeth using easy-to-collect predictors in early childhood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lf发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
搜集达人应助czz采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
10秒前
唯一完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
BOLI发布了新的文献求助10
13秒前
14秒前
MMMMathilda23完成签到,获得积分20
15秒前
21秒前
22秒前
22秒前
xww发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
科研通AI5应助邓邓采纳,获得10
26秒前
czz发布了新的文献求助10
27秒前
chillibb发布了新的文献求助10
28秒前
VV完成签到,获得积分10
32秒前
mm关闭了mm文献求助
32秒前
chillibb完成签到,获得积分10
37秒前
40秒前
41秒前
41秒前
43秒前
量子星尘发布了新的文献求助10
45秒前
科研通AI5应助zz采纳,获得10
46秒前
46秒前
47秒前
牟剑成发布了新的文献求助10
48秒前
48秒前
小鱼际,完成签到 ,获得积分20
52秒前
邓邓发布了新的文献求助10
54秒前
57秒前
1分钟前
1分钟前
慕青应助czz采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660936
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743605
捐赠科研通 2931648
什么是DOI,文献DOI怎么找? 1605146
邀请新用户注册赠送积分活动 757703
科研通“疑难数据库(出版商)”最低求助积分说明 734462