Early Childhood Predictors for Dental Caries: A Machine Learning Approach

医学 逻辑回归 社会心理的 牙科 接收机工作特性 儿童早期龋齿 社会经济地位 队列 口腔健康 人口 环境卫生 精神科 内科学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Bruna Brondani,Bruno Emmanuelli,Renata Saraiva Guedes,Fausto Medeiros Mendes,Thiago Machado Ardenghi
出处
期刊:Journal of Dental Research [SAGE]
卷期号:102 (9): 999-1006 被引量:28
标识
DOI:10.1177/00220345231170535
摘要

We aimed to develop and validate caries prognosis models in primary and permanent teeth after 2 and 10 y of follow-up through a machine learning (ML) approach, using predictors collected in early childhood. Data from a 10-y prospective cohort study conducted in southern Brazil were analyzed. Children aged 1 to 5 y were first examined in 2010 and reassessed in 2012 and 2020 regarding caries development. Dental caries was assessed using the Caries Detection and Assessment System (ICDAS) criteria. Demographic, socioeconomic, psychosocial, behavioral, and clinical factors were collected. ML algorithms decision tree, random forest, and extreme gradient boosting (XGBoost) were employed, along with logistic regression. The discrimination and calibration of models were verified in independent sets. From 639 children included at the baseline, we reassessed 467 (73.3%) and 428 (66.9%) children in 2012 and 2020, respectively. For all models, the area under receiver operating characteristic curve (AUC) at training and testing was above 0.70 for predicting caries in primary teeth after 2-y follow-up, with caries severity at the baseline being the strongest predictor. After 10 y, the SHAP algorithm based on XGBoost achieved an AUC higher than 0.70 in the testing set and indicated caries experience, nonuse of fluoridated toothpaste, parent education, higher frequency of sugar consumption, low frequency of visits to the relatives, and poor parents’ perception of their children’s oral health as top predictors for caries in permanent teeth. In conclusion, the implementation of ML shows potential for determining caries development in both primary and permanent teeth using easy-to-collect predictors in early childhood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xue0129完成签到,获得积分10
1秒前
jike发布了新的文献求助10
1秒前
2秒前
纯真的柔发布了新的文献求助10
2秒前
mww完成签到,获得积分10
2秒前
MikiWu完成签到,获得积分10
3秒前
蒋22完成签到 ,获得积分10
3秒前
zoe完成签到 ,获得积分10
3秒前
3秒前
无花果应助skyangar采纳,获得10
3秒前
科研通AI6应助weiyu_u采纳,获得30
3秒前
hehe完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
慕青应助cuarzn采纳,获得10
4秒前
5秒前
玖玖完成签到,获得积分10
5秒前
惜昭发布了新的文献求助10
5秒前
6秒前
文艺代灵完成签到,获得积分10
6秒前
葛儿完成签到 ,获得积分10
6秒前
7秒前
张某完成签到,获得积分10
7秒前
跳跃太清发布了新的文献求助10
7秒前
7秒前
yc发布了新的文献求助20
7秒前
Pie完成签到,获得积分10
7秒前
8秒前
左丘世立发布了新的文献求助10
8秒前
阿蓉啊完成签到 ,获得积分10
8秒前
TIANEO发布了新的文献求助10
8秒前
小瓶子发布了新的文献求助10
8秒前
蛋烘糕发布了新的文献求助10
8秒前
大虫子完成签到,获得积分10
8秒前
领导范儿应助纯真的柔采纳,获得10
9秒前
Cyrus2022发布了新的文献求助10
9秒前
April完成签到,获得积分10
9秒前
骤雨时晴完成签到 ,获得积分10
9秒前
LYSM应助小鱼鱼采纳,获得20
9秒前
9秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671