Adaptive Compensation Tracking Control for Parallel Robots Actuated by Pneumatic Artificial Muscles With Error Constraints

控制理论(社会学) 机器人 跟踪误差 控制器(灌溉) 弹道 计算机科学 补偿(心理学) 控制工程 气动人工肌肉 并联机械手 李雅普诺夫函数 理论(学习稳定性) 扭矩 非线性系统 人工肌肉 工程类 人工智能 控制(管理) 执行机构 物理 天文 机器学习 热力学 生物 量子力学 心理学 精神分析 农学
作者
Qihang Wang,Tong Yang,Gendi Liu,Yanding Qin,Yongchun Fang,Ning Sun
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1585-1595 被引量:4
标识
DOI:10.1109/tii.2023.3280321
摘要

As pneumatic artificial muscles (PAMs) are similar to biological muscles in structure and movement mechanisms, parallel robots actuated by PAMs have development prospects in rehabilitation and industry, with advantages such as compliance, high safety, strong bearing capacity, and satisfactory dynamic performance. However, the parameter uncertainties and model complexity related to inherent characteristics of parallel robots actuated by PAMs (e.g., time-varying, coupling, hysteresis, creep, and high nonlinearity), bring challenges to accurate dynamic modeling and controller design. Therefore, to achieve satisfactory tracking performance, this article presents an adaptive compensation tracking controller with error constraints for parallel robots actuated by PAMs. The proposed controller deals with parameter uncertainties by estimating system parameters to ensure accurate tracking, which is indicated as an effective solution for a combination of PAMs and parallel robots. Furthermore, using desired trajectory signals in the complicated regression matrix, the online computational burden is significantly reduced. Moreover, to improve operation safety further, an auxiliary term with a theoretical demonstration guarantees that the tracking errors are maintained within allowable ranges. Then, the closed-loop stability is demonstrated by Lyapunov techniques. As far as we know, it is the first time that the challenges of parameter uncertainties, computational burdens, and error constraints of parallel robots actuated by PAMs are simultaneously addressed, which has both theoretical significance and practical value. Finally, the hardware experiments are implemented under different scenarios, and the results indicate that the proposed method achieves satisfactory tracking performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我想把这玩意儿染成绿的完成签到 ,获得积分10
1秒前
TG_FY完成签到,获得积分10
1秒前
1秒前
hhh完成签到,获得积分10
1秒前
JamesPei应助诗轩采纳,获得10
2秒前
TT完成签到,获得积分10
3秒前
reck发布了新的文献求助10
3秒前
4秒前
DK发布了新的文献求助10
4秒前
英俊的铭应助ren采纳,获得10
4秒前
圈圈发布了新的文献求助10
4秒前
乐乱完成签到 ,获得积分10
5秒前
415484112完成签到,获得积分10
6秒前
yinyi发布了新的文献求助10
6秒前
6秒前
赵一丁完成签到,获得积分10
7秒前
成就绮琴完成签到 ,获得积分10
7秒前
Chen完成签到,获得积分10
7秒前
huanfid完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
Stitch完成签到 ,获得积分10
8秒前
8秒前
眯眯眼的冷珍完成签到,获得积分10
8秒前
bjyx完成签到,获得积分10
8秒前
reck完成签到,获得积分10
9秒前
pharmstudent发布了新的文献求助30
9秒前
小田完成签到,获得积分10
9秒前
小喵发布了新的文献求助10
10秒前
FashionBoy应助毛毛哦啊采纳,获得10
10秒前
Lucas应助Chen采纳,获得10
11秒前
强健的蚂蚁完成签到,获得积分20
11秒前
小宇发布了新的文献求助10
11秒前
斜杠武完成签到,获得积分20
11秒前
12秒前
伞兵龙发布了新的文献求助10
12秒前
RC_Wang应助科研小民工采纳,获得10
12秒前
sanben完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672