Multi agent deep reinforcement learning for resource allocation in container‐based clouds environments

云计算 计算机科学 虚拟化 强化学习 虚拟机 容器(类型理论) 分布式计算 可扩展性 资源配置 服务器 计算机网络 操作系统 人工智能 机械工程 工程类
作者
S. Nagarajan,P. Shobha Rani,M. S. Vinmathi,V. Subba Reddy,S. Angel Latha Mary,D. Abdus Subhahan
出处
期刊:Expert Systems [Wiley]
被引量:2
标识
DOI:10.1111/exsy.13362
摘要

Abstract Virtualization enables the deployment of several virtual servers on the same physical layer, critical component of the cloud. As cloud services advance, more apps that use repositories are developed, which adds to the overburden. Containers have evolved into the most reliable and lightweight virtualization technology for cloud services thanks to their flexible sorting, mobility, and scalability. In container‐based clouds, containers can potentially cut data centre energy usage more than virtual machines (VMs) do. Containers are less energy intensive than VMs. Resource allocation is the most prevalent method in cloud systems. However, resource allocation in container‐based clouds (RAC) is innovative and complicated due to its two‐level architecture. This includes the pairing of virtual machines and physical computers with containers. In cloud container services, planner components are essential. This lowers expenses while improving the performance and variety of workloads using cloud resources. The cloud infrastructure resource allocation framework is gaining popularity since it is energy‐efficient and focuses on cloud data management to maximize income and minimize costs. In this paper, we proposed a deep learning‐based architecture capable of achieving high data centre energy efficiency and preventing Service Level Agreement (SLA) violations from deploying green cloud resources. This research describes a hybrid optimum and multi‐agent deep reinforcement learning (MADRL) technique for dynamic task scheduling (DTS) in a container cloud environment. The MADRL‐DTS model for the RAC problem considers VM overheads, VM types, and an affinity restriction. Then, to address the RAC issue, we develop a DTS hyper‐heuristic technique. MADRL‐RAC may give allocation rules by recognizing workload trends and VM types from previous workload traces. Compared to modern procedures, the results demonstrate a significant reduction in energy consumption. The evaluation for energy‐efficient resource allocation is tested in several virtualized environments to get a high power usage effectiveness and CPU usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
大模型应助云为晓采纳,获得10
2秒前
默认用户名完成签到,获得积分10
3秒前
3秒前
asdf发布了新的文献求助10
3秒前
闪闪的梦柏完成签到 ,获得积分10
3秒前
jiangchuansm完成签到,获得积分10
4秒前
shenhaoran完成签到,获得积分10
4秒前
yaya完成签到,获得积分20
6秒前
淡然的念珍完成签到 ,获得积分10
6秒前
NNUsusan完成签到 ,获得积分10
7秒前
1499yqq完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
顾矜应助王治豪采纳,获得10
8秒前
风清扬应助GFR采纳,获得10
10秒前
ColdSunWu完成签到,获得积分10
10秒前
星辰大海应助11采纳,获得10
10秒前
万能图书馆应助11采纳,获得20
10秒前
斯文败类应助11采纳,获得20
10秒前
顺利铃铛发布了新的文献求助10
11秒前
充电宝应助11采纳,获得10
11秒前
Ice完成签到 ,获得积分10
12秒前
13秒前
好好吃饭完成签到 ,获得积分10
13秒前
Aurora1011完成签到 ,获得积分10
14秒前
yaya发布了新的文献求助30
14秒前
不倦发布了新的文献求助10
14秒前
15秒前
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得30
16秒前
Ava应助科研通管家采纳,获得10
16秒前
16秒前
Dean应助科研通管家采纳,获得200
16秒前
张诗雨完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498827
求助须知:如何正确求助?哪些是违规求助? 4595945
关于积分的说明 14451224
捐赠科研通 4528971
什么是DOI,文献DOI怎么找? 2481784
邀请新用户注册赠送积分活动 1465774
关于科研通互助平台的介绍 1438730