Multi agent deep reinforcement learning for resource allocation in container‐based clouds environments

云计算 计算机科学 虚拟化 强化学习 虚拟机 容器(类型理论) 分布式计算 可扩展性 资源配置 服务器 计算机网络 操作系统 人工智能 机械工程 工程类
作者
S. Nagarajan,P. Shobha Rani,M. S. Vinmathi,V. Subba Reddy,S. Angel Latha Mary,D. Abdus Subhahan
出处
期刊:Expert Systems [Wiley]
被引量:2
标识
DOI:10.1111/exsy.13362
摘要

Abstract Virtualization enables the deployment of several virtual servers on the same physical layer, critical component of the cloud. As cloud services advance, more apps that use repositories are developed, which adds to the overburden. Containers have evolved into the most reliable and lightweight virtualization technology for cloud services thanks to their flexible sorting, mobility, and scalability. In container‐based clouds, containers can potentially cut data centre energy usage more than virtual machines (VMs) do. Containers are less energy intensive than VMs. Resource allocation is the most prevalent method in cloud systems. However, resource allocation in container‐based clouds (RAC) is innovative and complicated due to its two‐level architecture. This includes the pairing of virtual machines and physical computers with containers. In cloud container services, planner components are essential. This lowers expenses while improving the performance and variety of workloads using cloud resources. The cloud infrastructure resource allocation framework is gaining popularity since it is energy‐efficient and focuses on cloud data management to maximize income and minimize costs. In this paper, we proposed a deep learning‐based architecture capable of achieving high data centre energy efficiency and preventing Service Level Agreement (SLA) violations from deploying green cloud resources. This research describes a hybrid optimum and multi‐agent deep reinforcement learning (MADRL) technique for dynamic task scheduling (DTS) in a container cloud environment. The MADRL‐DTS model for the RAC problem considers VM overheads, VM types, and an affinity restriction. Then, to address the RAC issue, we develop a DTS hyper‐heuristic technique. MADRL‐RAC may give allocation rules by recognizing workload trends and VM types from previous workload traces. Compared to modern procedures, the results demonstrate a significant reduction in energy consumption. The evaluation for energy‐efficient resource allocation is tested in several virtualized environments to get a high power usage effectiveness and CPU usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QJYKKK完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
耶喽小黄发布了新的文献求助10
2秒前
GUOGUO完成签到 ,获得积分10
3秒前
李宗洋完成签到,获得积分10
3秒前
xueshu发布了新的文献求助30
4秒前
dove00发布了新的文献求助10
4秒前
烟花应助椰子味冰淇淋采纳,获得10
4秒前
传奇3应助靳韩羽采纳,获得10
5秒前
kk55完成签到,获得积分10
5秒前
7秒前
NN发布了新的文献求助30
7秒前
小乔应助michael采纳,获得10
7秒前
ZOE应助9699采纳,获得50
7秒前
jasmineee完成签到 ,获得积分10
8秒前
Twonej给丫丫的求助进行了留言
8秒前
rumor发布了新的文献求助10
8秒前
Jasper应助跳跃小伙采纳,获得100
9秒前
wanwuzhumu发布了新的文献求助10
9秒前
小劉同志关注了科研通微信公众号
9秒前
林夕完成签到 ,获得积分10
9秒前
柔弱的老三完成签到 ,获得积分10
9秒前
10秒前
CadoreK完成签到 ,获得积分10
10秒前
landy完成签到 ,获得积分10
11秒前
舒心幻竹完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
FashionBoy应助pamela采纳,获得10
13秒前
14秒前
522完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
脉动完成签到,获得积分10
16秒前
16秒前
fantastic完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812