已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi agent deep reinforcement learning for resource allocation in container‐based clouds environments

云计算 计算机科学 虚拟化 强化学习 虚拟机 容器(类型理论) 分布式计算 可扩展性 资源配置 服务器 计算机网络 操作系统 人工智能 机械工程 工程类
作者
S. Nagarajan,P. Shobha Rani,M. S. Vinmathi,V. Subba Reddy,S. Angel Latha Mary,D. Abdus Subhahan
出处
期刊:Expert Systems [Wiley]
被引量:2
标识
DOI:10.1111/exsy.13362
摘要

Abstract Virtualization enables the deployment of several virtual servers on the same physical layer, critical component of the cloud. As cloud services advance, more apps that use repositories are developed, which adds to the overburden. Containers have evolved into the most reliable and lightweight virtualization technology for cloud services thanks to their flexible sorting, mobility, and scalability. In container‐based clouds, containers can potentially cut data centre energy usage more than virtual machines (VMs) do. Containers are less energy intensive than VMs. Resource allocation is the most prevalent method in cloud systems. However, resource allocation in container‐based clouds (RAC) is innovative and complicated due to its two‐level architecture. This includes the pairing of virtual machines and physical computers with containers. In cloud container services, planner components are essential. This lowers expenses while improving the performance and variety of workloads using cloud resources. The cloud infrastructure resource allocation framework is gaining popularity since it is energy‐efficient and focuses on cloud data management to maximize income and minimize costs. In this paper, we proposed a deep learning‐based architecture capable of achieving high data centre energy efficiency and preventing Service Level Agreement (SLA) violations from deploying green cloud resources. This research describes a hybrid optimum and multi‐agent deep reinforcement learning (MADRL) technique for dynamic task scheduling (DTS) in a container cloud environment. The MADRL‐DTS model for the RAC problem considers VM overheads, VM types, and an affinity restriction. Then, to address the RAC issue, we develop a DTS hyper‐heuristic technique. MADRL‐RAC may give allocation rules by recognizing workload trends and VM types from previous workload traces. Compared to modern procedures, the results demonstrate a significant reduction in energy consumption. The evaluation for energy‐efficient resource allocation is tested in several virtualized environments to get a high power usage effectiveness and CPU usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
东风夜放花千树完成签到 ,获得积分10
2秒前
刘亦菲暧昧对象完成签到 ,获得积分10
4秒前
黄绪林发布了新的文献求助10
4秒前
阳光的星月完成签到,获得积分20
6秒前
轻松熊不轻松完成签到 ,获得积分10
7秒前
合适雅绿完成签到 ,获得积分10
7秒前
8秒前
chrysophoron发布了新的文献求助40
8秒前
香蕉觅云应助洪亮采纳,获得10
8秒前
John发布了新的文献求助150
9秒前
开心惜梦完成签到,获得积分10
10秒前
14秒前
洪亮完成签到,获得积分10
15秒前
胡佳庆完成签到,获得积分20
16秒前
科研通AI6应助sunhao采纳,获得30
16秒前
黄绪林完成签到,获得积分20
18秒前
bkagyin应助阳光的星月采纳,获得10
18秒前
19秒前
guaishou完成签到,获得积分10
19秒前
LAN完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
传奇3应助科研通管家采纳,获得10
23秒前
优美紫槐应助科研通管家采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
迷路的沛芹完成签到 ,获得积分0
23秒前
崔灿完成签到 ,获得积分10
23秒前
mo完成签到 ,获得积分10
26秒前
28秒前
32秒前
transition发布了新的文献求助10
34秒前
35秒前
超级的人达完成签到 ,获得积分10
37秒前
gao0505完成签到,获得积分10
38秒前
葵花籽完成签到,获得积分10
42秒前
43秒前
友好诗霜完成签到 ,获得积分10
44秒前
Tong123完成签到,获得积分10
45秒前
Dannnn完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890007
捐赠科研通 4727175
什么是DOI,文献DOI怎么找? 2545923
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236