Multi agent deep reinforcement learning for resource allocation in container‐based clouds environments

云计算 计算机科学 虚拟化 强化学习 虚拟机 容器(类型理论) 分布式计算 可扩展性 资源配置 服务器 计算机网络 操作系统 人工智能 机械工程 工程类
作者
S. Nagarajan,P. Shobha Rani,M. S. Vinmathi,V. Subba Reddy,S. Angel Latha Mary,D. Abdus Subhahan
出处
期刊:Expert Systems [Wiley]
被引量:2
标识
DOI:10.1111/exsy.13362
摘要

Abstract Virtualization enables the deployment of several virtual servers on the same physical layer, critical component of the cloud. As cloud services advance, more apps that use repositories are developed, which adds to the overburden. Containers have evolved into the most reliable and lightweight virtualization technology for cloud services thanks to their flexible sorting, mobility, and scalability. In container‐based clouds, containers can potentially cut data centre energy usage more than virtual machines (VMs) do. Containers are less energy intensive than VMs. Resource allocation is the most prevalent method in cloud systems. However, resource allocation in container‐based clouds (RAC) is innovative and complicated due to its two‐level architecture. This includes the pairing of virtual machines and physical computers with containers. In cloud container services, planner components are essential. This lowers expenses while improving the performance and variety of workloads using cloud resources. The cloud infrastructure resource allocation framework is gaining popularity since it is energy‐efficient and focuses on cloud data management to maximize income and minimize costs. In this paper, we proposed a deep learning‐based architecture capable of achieving high data centre energy efficiency and preventing Service Level Agreement (SLA) violations from deploying green cloud resources. This research describes a hybrid optimum and multi‐agent deep reinforcement learning (MADRL) technique for dynamic task scheduling (DTS) in a container cloud environment. The MADRL‐DTS model for the RAC problem considers VM overheads, VM types, and an affinity restriction. Then, to address the RAC issue, we develop a DTS hyper‐heuristic technique. MADRL‐RAC may give allocation rules by recognizing workload trends and VM types from previous workload traces. Compared to modern procedures, the results demonstrate a significant reduction in energy consumption. The evaluation for energy‐efficient resource allocation is tested in several virtualized environments to get a high power usage effectiveness and CPU usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弗一昂发布了新的文献求助10
1秒前
1秒前
1秒前
三金发布了新的文献求助10
1秒前
1秒前
SMQ完成签到 ,获得积分10
2秒前
2秒前
2秒前
LuLan0401发布了新的文献求助10
3秒前
受伤的老头完成签到,获得积分10
3秒前
晨曦发布了新的文献求助10
3秒前
打打应助nsk采纳,获得10
4秒前
Luo完成签到 ,获得积分10
4秒前
Mry完成签到,获得积分10
4秒前
Jasper应助清凉采纳,获得10
4秒前
4秒前
5秒前
怡然的白开水完成签到 ,获得积分10
5秒前
凡仔完成签到,获得积分10
5秒前
会怎样呢发布了新的文献求助10
5秒前
5秒前
6秒前
积极问晴发布了新的文献求助10
6秒前
Lucas应助ouyangshi采纳,获得10
6秒前
CC发布了新的文献求助10
7秒前
乐乐应助阿鹿462采纳,获得10
7秒前
Lucas选李华完成签到 ,获得积分10
7秒前
7秒前
清爽明辉发布了新的文献求助10
7秒前
尚可完成签到 ,获得积分10
7秒前
三金完成签到,获得积分10
7秒前
传奇3应助怕孤单的斑马采纳,获得10
9秒前
江上清风游完成签到,获得积分10
9秒前
Dolphin123完成签到,获得积分20
9秒前
勤奋的乐荷完成签到,获得积分10
10秒前
11秒前
魔幻若血发布了新的文献求助10
11秒前
11秒前
大个应助由富采纳,获得10
11秒前
suodeheng完成签到,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168110
求助须知:如何正确求助?哪些是违规求助? 2819468
关于积分的说明 7926640
捐赠科研通 2479343
什么是DOI,文献DOI怎么找? 1320739
科研通“疑难数据库(出版商)”最低求助积分说明 632898
版权声明 602458