Multi agent deep reinforcement learning for resource allocation in container‐based clouds environments

云计算 计算机科学 虚拟化 强化学习 虚拟机 容器(类型理论) 分布式计算 可扩展性 资源配置 服务器 计算机网络 操作系统 人工智能 机械工程 工程类
作者
S. Nagarajan,P. Shobha Rani,M. S. Vinmathi,V. Subba Reddy,S. Angel Latha Mary,D. Abdus Subhahan
出处
期刊:Expert Systems [Wiley]
被引量:2
标识
DOI:10.1111/exsy.13362
摘要

Abstract Virtualization enables the deployment of several virtual servers on the same physical layer, critical component of the cloud. As cloud services advance, more apps that use repositories are developed, which adds to the overburden. Containers have evolved into the most reliable and lightweight virtualization technology for cloud services thanks to their flexible sorting, mobility, and scalability. In container‐based clouds, containers can potentially cut data centre energy usage more than virtual machines (VMs) do. Containers are less energy intensive than VMs. Resource allocation is the most prevalent method in cloud systems. However, resource allocation in container‐based clouds (RAC) is innovative and complicated due to its two‐level architecture. This includes the pairing of virtual machines and physical computers with containers. In cloud container services, planner components are essential. This lowers expenses while improving the performance and variety of workloads using cloud resources. The cloud infrastructure resource allocation framework is gaining popularity since it is energy‐efficient and focuses on cloud data management to maximize income and minimize costs. In this paper, we proposed a deep learning‐based architecture capable of achieving high data centre energy efficiency and preventing Service Level Agreement (SLA) violations from deploying green cloud resources. This research describes a hybrid optimum and multi‐agent deep reinforcement learning (MADRL) technique for dynamic task scheduling (DTS) in a container cloud environment. The MADRL‐DTS model for the RAC problem considers VM overheads, VM types, and an affinity restriction. Then, to address the RAC issue, we develop a DTS hyper‐heuristic technique. MADRL‐RAC may give allocation rules by recognizing workload trends and VM types from previous workload traces. Compared to modern procedures, the results demonstrate a significant reduction in energy consumption. The evaluation for energy‐efficient resource allocation is tested in several virtualized environments to get a high power usage effectiveness and CPU usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC应助xll采纳,获得10
2秒前
清风完成签到,获得积分10
3秒前
4秒前
冯万强发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
nenoaowu完成签到,获得积分10
6秒前
配言完成签到,获得积分10
6秒前
火星上宛秋完成签到 ,获得积分10
7秒前
Hana完成签到,获得积分10
7秒前
奋斗完成签到,获得积分20
7秒前
7秒前
7秒前
勤奋起来完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
9秒前
Deanna完成签到 ,获得积分10
9秒前
kaka完成签到 ,获得积分10
9秒前
科研通AI6应助配言采纳,获得10
10秒前
CodeCraft应助AI_S采纳,获得10
11秒前
刘子琪完成签到,获得积分10
11秒前
朴实的沛春完成签到,获得积分20
13秒前
13秒前
无花果应助KKKK采纳,获得10
14秒前
过几天发布了新的文献求助10
15秒前
15秒前
核桃应助木耳采纳,获得10
15秒前
nenoaowu发布了新的文献求助10
17秒前
18秒前
tsttst完成签到,获得积分10
18秒前
21秒前
浮游应助nenoaowu采纳,获得10
22秒前
浮游应助nenoaowu采纳,获得10
22秒前
浮游应助nenoaowu采纳,获得10
22秒前
浮游应助nenoaowu采纳,获得10
22秒前
22秒前
小库里2025发布了新的文献求助10
22秒前
22秒前
popvich应助愿理采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588536
求助须知:如何正确求助?哪些是违规求助? 4671619
关于积分的说明 14788074
捐赠科研通 4625624
什么是DOI,文献DOI怎么找? 2531873
邀请新用户注册赠送积分活动 1500436
关于科研通互助平台的介绍 1468324