Multi agent deep reinforcement learning for resource allocation in container‐based clouds environments

云计算 计算机科学 虚拟化 强化学习 虚拟机 容器(类型理论) 分布式计算 可扩展性 资源配置 服务器 计算机网络 操作系统 人工智能 机械工程 工程类
作者
S. Nagarajan,P. Shobha Rani,M. S. Vinmathi,V. Subba Reddy,S. Angel Latha Mary,D. Abdus Subhahan
出处
期刊:Expert Systems [Wiley]
被引量:2
标识
DOI:10.1111/exsy.13362
摘要

Abstract Virtualization enables the deployment of several virtual servers on the same physical layer, critical component of the cloud. As cloud services advance, more apps that use repositories are developed, which adds to the overburden. Containers have evolved into the most reliable and lightweight virtualization technology for cloud services thanks to their flexible sorting, mobility, and scalability. In container‐based clouds, containers can potentially cut data centre energy usage more than virtual machines (VMs) do. Containers are less energy intensive than VMs. Resource allocation is the most prevalent method in cloud systems. However, resource allocation in container‐based clouds (RAC) is innovative and complicated due to its two‐level architecture. This includes the pairing of virtual machines and physical computers with containers. In cloud container services, planner components are essential. This lowers expenses while improving the performance and variety of workloads using cloud resources. The cloud infrastructure resource allocation framework is gaining popularity since it is energy‐efficient and focuses on cloud data management to maximize income and minimize costs. In this paper, we proposed a deep learning‐based architecture capable of achieving high data centre energy efficiency and preventing Service Level Agreement (SLA) violations from deploying green cloud resources. This research describes a hybrid optimum and multi‐agent deep reinforcement learning (MADRL) technique for dynamic task scheduling (DTS) in a container cloud environment. The MADRL‐DTS model for the RAC problem considers VM overheads, VM types, and an affinity restriction. Then, to address the RAC issue, we develop a DTS hyper‐heuristic technique. MADRL‐RAC may give allocation rules by recognizing workload trends and VM types from previous workload traces. Compared to modern procedures, the results demonstrate a significant reduction in energy consumption. The evaluation for energy‐efficient resource allocation is tested in several virtualized environments to get a high power usage effectiveness and CPU usage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助augen采纳,获得30
刚刚
shu发布了新的文献求助10
刚刚
Zzz完成签到,获得积分10
1秒前
领导范儿应助jy采纳,获得10
1秒前
1秒前
123发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
酷波er应助舒适的紫丝采纳,获得10
3秒前
4秒前
4秒前
4秒前
猫duoduo发布了新的文献求助10
4秒前
ting发布了新的文献求助10
4秒前
深情安青应助Rando采纳,获得10
4秒前
5秒前
小二郎应助高大的可仁采纳,获得10
5秒前
5秒前
yqq发布了新的文献求助10
5秒前
acatao完成签到,获得积分20
5秒前
Chenst完成签到,获得积分10
6秒前
6秒前
7秒前
pearl发布了新的文献求助10
7秒前
温暖半芹发布了新的文献求助10
7秒前
霸气的人生完成签到,获得积分20
7秒前
赘婿应助YZC采纳,获得200
8秒前
HJJHJH发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
orixero应助Maestro_S采纳,获得10
8秒前
8秒前
爆米花应助Milder采纳,获得10
8秒前
Ava应助小鹿乱撞采纳,获得10
9秒前
Asystasia7完成签到,获得积分10
9秒前
今后应助开心不评采纳,获得10
9秒前
满意曼荷完成签到,获得积分10
9秒前
抹茶泡泡完成签到 ,获得积分10
10秒前
lyf完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692514
求助须知:如何正确求助?哪些是违规求助? 5088556
关于积分的说明 15208452
捐赠科研通 4849737
什么是DOI,文献DOI怎么找? 2601255
邀请新用户注册赠送积分活动 1553028
关于科研通互助平台的介绍 1511271