已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi agent deep reinforcement learning for resource allocation in container‐based clouds environments

云计算 计算机科学 虚拟化 强化学习 虚拟机 容器(类型理论) 分布式计算 可扩展性 资源配置 服务器 计算机网络 操作系统 人工智能 机械工程 工程类
作者
S. Nagarajan,P. Shobha Rani,M. S. Vinmathi,V. Subba Reddy,S. Angel Latha Mary,D. Abdus Subhahan
出处
期刊:Expert Systems [Wiley]
被引量:2
标识
DOI:10.1111/exsy.13362
摘要

Abstract Virtualization enables the deployment of several virtual servers on the same physical layer, critical component of the cloud. As cloud services advance, more apps that use repositories are developed, which adds to the overburden. Containers have evolved into the most reliable and lightweight virtualization technology for cloud services thanks to their flexible sorting, mobility, and scalability. In container‐based clouds, containers can potentially cut data centre energy usage more than virtual machines (VMs) do. Containers are less energy intensive than VMs. Resource allocation is the most prevalent method in cloud systems. However, resource allocation in container‐based clouds (RAC) is innovative and complicated due to its two‐level architecture. This includes the pairing of virtual machines and physical computers with containers. In cloud container services, planner components are essential. This lowers expenses while improving the performance and variety of workloads using cloud resources. The cloud infrastructure resource allocation framework is gaining popularity since it is energy‐efficient and focuses on cloud data management to maximize income and minimize costs. In this paper, we proposed a deep learning‐based architecture capable of achieving high data centre energy efficiency and preventing Service Level Agreement (SLA) violations from deploying green cloud resources. This research describes a hybrid optimum and multi‐agent deep reinforcement learning (MADRL) technique for dynamic task scheduling (DTS) in a container cloud environment. The MADRL‐DTS model for the RAC problem considers VM overheads, VM types, and an affinity restriction. Then, to address the RAC issue, we develop a DTS hyper‐heuristic technique. MADRL‐RAC may give allocation rules by recognizing workload trends and VM types from previous workload traces. Compared to modern procedures, the results demonstrate a significant reduction in energy consumption. The evaluation for energy‐efficient resource allocation is tested in several virtualized environments to get a high power usage effectiveness and CPU usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qsq完成签到 ,获得积分10
1秒前
1秒前
2秒前
5秒前
天天快乐应助浮光采纳,获得10
5秒前
ding应助panyi采纳,获得10
6秒前
8秒前
9秒前
joan完成签到,获得积分10
10秒前
10秒前
传奇3应助Tracy采纳,获得10
11秒前
薛变霞发布了新的文献求助10
11秒前
幸运幸福完成签到,获得积分10
12秒前
yuanyuan发布了新的文献求助10
12秒前
优雅完成签到,获得积分10
13秒前
斯文怀寒完成签到 ,获得积分20
13秒前
13秒前
善学以致用应助想想采纳,获得10
14秒前
端庄的飞阳完成签到 ,获得积分10
14秒前
orixero应助健忘海露采纳,获得10
15秒前
清风如月发布了新的文献求助10
15秒前
qiandi完成签到 ,获得积分10
16秒前
18秒前
无限白羊发布了新的文献求助10
19秒前
20秒前
yuanyuan完成签到,获得积分10
21秒前
23秒前
大模型应助复方蛋酥卷采纳,获得20
24秒前
24秒前
25秒前
英姑应助留胡子的大树采纳,获得10
26秒前
十六夜彦完成签到,获得积分10
26秒前
浮光发布了新的文献求助10
27秒前
菠萝完成签到 ,获得积分0
28秒前
29秒前
31秒前
LA发布了新的文献求助20
33秒前
香蕉觅云应助李国铭采纳,获得10
33秒前
34秒前
orcusyoung发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263