Multi agent deep reinforcement learning for resource allocation in container‐based clouds environments

云计算 计算机科学 虚拟化 强化学习 虚拟机 容器(类型理论) 分布式计算 可扩展性 资源配置 服务器 计算机网络 操作系统 人工智能 机械工程 工程类
作者
S. Nagarajan,P. Shobha Rani,M. S. Vinmathi,V. Subba Reddy,S. Angel Latha Mary,D. Abdus Subhahan
出处
期刊:Expert Systems [Wiley]
被引量:2
标识
DOI:10.1111/exsy.13362
摘要

Abstract Virtualization enables the deployment of several virtual servers on the same physical layer, critical component of the cloud. As cloud services advance, more apps that use repositories are developed, which adds to the overburden. Containers have evolved into the most reliable and lightweight virtualization technology for cloud services thanks to their flexible sorting, mobility, and scalability. In container‐based clouds, containers can potentially cut data centre energy usage more than virtual machines (VMs) do. Containers are less energy intensive than VMs. Resource allocation is the most prevalent method in cloud systems. However, resource allocation in container‐based clouds (RAC) is innovative and complicated due to its two‐level architecture. This includes the pairing of virtual machines and physical computers with containers. In cloud container services, planner components are essential. This lowers expenses while improving the performance and variety of workloads using cloud resources. The cloud infrastructure resource allocation framework is gaining popularity since it is energy‐efficient and focuses on cloud data management to maximize income and minimize costs. In this paper, we proposed a deep learning‐based architecture capable of achieving high data centre energy efficiency and preventing Service Level Agreement (SLA) violations from deploying green cloud resources. This research describes a hybrid optimum and multi‐agent deep reinforcement learning (MADRL) technique for dynamic task scheduling (DTS) in a container cloud environment. The MADRL‐DTS model for the RAC problem considers VM overheads, VM types, and an affinity restriction. Then, to address the RAC issue, we develop a DTS hyper‐heuristic technique. MADRL‐RAC may give allocation rules by recognizing workload trends and VM types from previous workload traces. Compared to modern procedures, the results demonstrate a significant reduction in energy consumption. The evaluation for energy‐efficient resource allocation is tested in several virtualized environments to get a high power usage effectiveness and CPU usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
耶斯发布了新的文献求助10
刚刚
扑火退羽完成签到,获得积分10
1秒前
MMM完成签到,获得积分10
1秒前
1秒前
1秒前
于浩发布了新的文献求助10
1秒前
1秒前
2秒前
昵称发布了新的文献求助10
2秒前
lyyyyyyyyyyyy发布了新的文献求助10
2秒前
皮夏寒完成签到,获得积分10
3秒前
wenjing发布了新的文献求助10
3秒前
风中水风发布了新的文献求助10
3秒前
开心荷包蛋完成签到 ,获得积分10
3秒前
5秒前
469459442发布了新的文献求助10
5秒前
NexusExplorer应助畅快的一鸣采纳,获得10
6秒前
光电很亮发布了新的文献求助10
6秒前
烂漫梦之发布了新的文献求助20
6秒前
Lignin发布了新的文献求助10
6秒前
7秒前
传奇3应助LGH采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
乌萨奇应助科研通管家采纳,获得20
7秒前
8秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
情怀应助淡然的衣采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
韶华完成签到,获得积分10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560391
求助须知:如何正确求助?哪些是违规求助? 3986563
关于积分的说明 12343059
捐赠科研通 3657249
什么是DOI,文献DOI怎么找? 2014798
邀请新用户注册赠送积分活动 1049621
科研通“疑难数据库(出版商)”最低求助积分说明 937803