Attention-Based Deep Learning Model for Prediction of Major Adverse Cardiovascular Events in Peritoneal Dialysis Patients

狼牙棒 医学 腹膜透析 心肌梗塞 预测建模 机器学习 计算机科学 人工智能 内科学 传统PCI
作者
Zhiyuan Xu,Xiao Xu,Xuemei Zhu,Kai Niu,Jie Dong,Zhiqiang He
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 1101-1109 被引量:3
标识
DOI:10.1109/jbhi.2023.3338729
摘要

Major adverse cardiovascular events (MACE) encompass pivotal cardiovascular outcomes such as myocardial infarction, unstable angina, and cardiovascular-related mortality. Patients undergoing peritoneal dialysis (PD) exhibit specific cardiovascular risk factors during the treatment, which can escalate the likelihood of cardiovascular events. Hence, the prediction and key factor analysis of MACE have assumed paramount significance for peritoneal dialysis patients. Current pathological methodologies for prognosis prediction are not only costly but also cumbersome in effectively processing electronic health records (EHRs) data with high dimensionality, heterogeneity, and time series. Therefore in this study, we propose the CVEformer, an attention-based neural network designed to predict MACE and analyze risk factors. CVEformer leverages the self-attention mechanism to capture temporal correlations among time series variables, allowing for weighted integration of variables and estimation of the probability of MACE. CVEformer first captures the correlations among heterogeneous variables through attention scores. Then, it analyzes the correlations within the time series data to identify key risk variables and predict the probability of MACE. When trained and evaluated on data from a large cohort of peritoneal dialysis patients across multiple centers, CVEformer outperforms existing models in terms of predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan关注了科研通微信公众号
刚刚
CodeCraft应助企鹅采纳,获得10
刚刚
Be-a rogue完成签到,获得积分10
1秒前
1秒前
韩洋发布了新的文献求助10
1秒前
xiaodu完成签到,获得积分10
1秒前
简单发布了新的文献求助10
2秒前
烟花应助ppp采纳,获得10
2秒前
2秒前
2秒前
吃葡萄不吐胡萝卜皮完成签到 ,获得积分10
3秒前
3秒前
家伟发布了新的文献求助10
3秒前
miao完成签到,获得积分20
3秒前
希望天下0贩的0应助yy采纳,获得10
3秒前
3秒前
机灵的乘云完成签到,获得积分20
3秒前
啊呆哦发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI2S应助99668采纳,获得10
5秒前
充电宝应助ccc采纳,获得10
5秒前
5秒前
蓓蕾完成签到,获得积分10
5秒前
6秒前
6秒前
ni好发布了新的文献求助10
6秒前
852应助笑点低蜜蜂采纳,获得10
7秒前
Akim应助窜天猴采纳,获得10
7秒前
Orange应助shifeng采纳,获得10
8秒前
蓓蕾发布了新的文献求助10
8秒前
酚蓝完成签到,获得积分10
8秒前
9秒前
lrjk完成签到,获得积分10
9秒前
9秒前
二红红关注了科研通微信公众号
10秒前
10秒前
10秒前
偷懒发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Spatial Econometrics: Spatial Autoregressive Models (World Scientific Series on Econometrics and Statistics Book 1) 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5110973
求助须知:如何正确求助?哪些是违规求助? 4319290
关于积分的说明 13457509
捐赠科研通 4149698
什么是DOI,文献DOI怎么找? 2273726
邀请新用户注册赠送积分活动 1275816
关于科研通互助平台的介绍 1214018