Attention-Based Deep Learning Model for Prediction of Major Adverse Cardiovascular Events in Peritoneal Dialysis Patients

狼牙棒 医学 腹膜透析 心肌梗塞 预测建模 机器学习 计算机科学 人工智能 内科学 传统PCI
作者
Zhiyuan Xu,Xiao Xu,Xuemei Zhu,Kai Niu,Jie Dong,Zhiqiang He
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 1101-1109 被引量:3
标识
DOI:10.1109/jbhi.2023.3338729
摘要

Major adverse cardiovascular events (MACE) encompass pivotal cardiovascular outcomes such as myocardial infarction, unstable angina, and cardiovascular-related mortality. Patients undergoing peritoneal dialysis (PD) exhibit specific cardiovascular risk factors during the treatment, which can escalate the likelihood of cardiovascular events. Hence, the prediction and key factor analysis of MACE have assumed paramount significance for peritoneal dialysis patients. Current pathological methodologies for prognosis prediction are not only costly but also cumbersome in effectively processing electronic health records (EHRs) data with high dimensionality, heterogeneity, and time series. Therefore in this study, we propose the CVEformer, an attention-based neural network designed to predict MACE and analyze risk factors. CVEformer leverages the self-attention mechanism to capture temporal correlations among time series variables, allowing for weighted integration of variables and estimation of the probability of MACE. CVEformer first captures the correlations among heterogeneous variables through attention scores. Then, it analyzes the correlations within the time series data to identify key risk variables and predict the probability of MACE. When trained and evaluated on data from a large cohort of peritoneal dialysis patients across multiple centers, CVEformer outperforms existing models in terms of predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vict应助chris采纳,获得10
1秒前
完美世界应助阔达碧空采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
笑靥如花完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
从容完成签到,获得积分10
8秒前
8秒前
niania发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
panhang完成签到,获得积分10
10秒前
10秒前
10秒前
桐桐应助莫比乌斯采纳,获得10
10秒前
10秒前
10秒前
传奇3应助凡yeah采纳,获得10
10秒前
panhang发布了新的文献求助10
12秒前
FashionBoy应助烂漫念文采纳,获得10
13秒前
13秒前
三毛变相完成签到,获得积分10
14秒前
15秒前
Unique发布了新的文献求助10
15秒前
shanmao完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
流香完成签到,获得积分10
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991794
求助须知:如何正确求助?哪些是违规求助? 3532981
关于积分的说明 11260197
捐赠科研通 3272241
什么是DOI,文献DOI怎么找? 1805664
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809405