已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Bearing Fault Diagnosis Using a Trusted Multiscale Quadratic Attention-Embedded Convolutional Neural Network

卷积神经网络 计算机科学 深度学习 人工智能 断层(地质) 噪音(视频) 方位(导航) 可靠性(半导体) 人工神经网络 干扰(通信) 模式识别(心理学) 机器学习 可靠性工程 工程类 计算机网络 功率(物理) 图像(数学) 频道(广播) 地质学 地震学 量子力学 物理
作者
Yuheng Tang,Chaoyong Zhang,Jianzhao Wu,Yang Xie,Weiming Shen,Jun Wu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:25
标识
DOI:10.1109/tim.2024.3374311
摘要

Bearing fault diagnosis is essential for ensuring the safety and reliability of industrial systems. Recently, deep learning approaches, especially the convolutional neural network, have demonstrated exceptional performance in bearing fault diagnosis. However, the limited availability of training samples has been a persistent issue, leading to a significant reduction in diagnostic accuracy. Additionally, noise interference or load variation during bearing operation pose significant challenges for fault diagnosis. To tackle the above issues, this paper explores the application of quadratic neuron with attention-embedded for fault diagnosis networks and introduces a trusted multi-scale learning strategy that fully considers the characteristics of bearing vibration signals. Building upon these concepts, a trusted multi-scale quadratic attention-embedded convolutional neural network is proposed for bearing faults diagnosis. Experimental results indicate that the proposed network outperforms six stateof-the-art networks under noise interference or load variation superimposed on small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EMM完成签到 ,获得积分10
刚刚
知足的憨人*-*完成签到,获得积分10
刚刚
领导范儿应助顺利若山采纳,获得10
1秒前
2秒前
领导范儿应助家稚晴采纳,获得10
2秒前
清浅完成签到,获得积分10
4秒前
5秒前
5秒前
夏侯德东发布了新的文献求助10
8秒前
阿怪完成签到,获得积分10
8秒前
无花果应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
鬼笔环肽应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
deanerysl完成签到,获得积分20
10秒前
恰知发布了新的文献求助10
10秒前
turui完成签到 ,获得积分10
11秒前
dery发布了新的文献求助10
11秒前
leena完成签到 ,获得积分10
13秒前
共享精神应助风中傲柔采纳,获得10
13秒前
倩倩完成签到 ,获得积分10
18秒前
蓝蜗牛完成签到,获得积分10
19秒前
Ss完成签到 ,获得积分10
21秒前
吾开心完成签到,获得积分20
23秒前
知行者完成签到,获得积分10
23秒前
dery完成签到,获得积分10
23秒前
海贵完成签到,获得积分10
24秒前
柚子完成签到 ,获得积分10
26秒前
26秒前
浮游应助元气满满采纳,获得10
27秒前
坐雨赏花完成签到 ,获得积分10
30秒前
招水若离完成签到,获得积分0
30秒前
恰知完成签到,获得积分10
31秒前
后陡门爱神完成签到 ,获得积分10
31秒前
danli发布了新的文献求助20
33秒前
xiuxiuzhang完成签到 ,获得积分10
34秒前
害怕的冬灵完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172597
求助须知:如何正确求助?哪些是违规求助? 4362775
关于积分的说明 13584396
捐赠科研通 4210832
什么是DOI,文献DOI怎么找? 2309516
邀请新用户注册赠送积分活动 1308631
关于科研通互助平台的介绍 1255818