Trend-attribute forecasting of hourly PM2.5 trends in fifteen cities of Central England applying optimized machine learning feature selection

单变量 Lasso(编程语言) 特征选择 环境科学 气象学 支持向量机 预测建模 统计 多元统计 计算机科学 地理 机器学习 数学 万维网
作者
David A. Wood
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:356: 120561-120561
标识
DOI:10.1016/j.jenvman.2024.120561
摘要

Recorded particulate matter (PM2.5) hourly trends are compared for fifteen urban recording sites distributed across central England for the period 2018 to 2022. They include 10 urban-background and five urban-traffic (roadside) sites with some located within the same urban area. The sites all show consistent background and peak distributions with mean annual values and standard deviations higher for 2018 and 2019 than for 2020 to 2022. The objective of this study is to demonstrate that trend attributes extracted from hourly recorded univariate PM2.5 trends at these sites can be used to provide reliable short-term hourly predictions and provide valuable insight into the regional variations in the recorded trends. Fifteen trend attributes extracted from the prior 12 h (t-1 to t-12) of recorded PM2.5 data were compiled and used as input to four supervised machine learning models (SML) to forecast PM2.5 concentrations up to 13 h ahead (t0 to t+12). All recording sites delivered forecasts with similar ranges of error levels for specific hours ahead which are consistent with their PM2.5 recorded ranges. Forecasting results for four representative sites are presented in detail using models trained and cross-validated with 2020 and 2021 hourly data to forecast 2021 and 2022 hourly data, respectively. A novel optimized feature selection procedure using a suite of five optimizers is used to improve the efficiency of the forecasting models. The LASSO and support vector regression models generate the best and most generalizable hourly PM2.5 forecasts from trained and validated SML models with mean average error (MAE) of between ∼1 and ∼3 μg/m3 for t0 to t+3 h ahead. A novel overfitting indicator, exploiting the cross-validation mean values, demonstrates that these two models are not affected by overfitting. Forecasts for t+6 to t+12 h forward generate higher MAE values between ∼3 and ∼4 μg/m3 due to their tendency to underestimate some of the extreme PM2.5 peaks. These findings indicate that further model refinements are required to generate more reliable short-term predictions for the t+6 to t+24 h ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助万物安生采纳,获得10
4秒前
健忘跳跳糖完成签到,获得积分20
4秒前
5秒前
5秒前
C陈完成签到,获得积分10
7秒前
8秒前
suger发布了新的文献求助10
9秒前
10秒前
干雅柏完成签到,获得积分10
11秒前
八九完成签到,获得积分10
12秒前
13秒前
干雅柏发布了新的文献求助10
14秒前
Stardust发布了新的文献求助10
14秒前
黑白和完成签到 ,获得积分10
15秒前
yang完成签到,获得积分10
16秒前
金蛋蛋发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
23秒前
28秒前
淡定的电源完成签到,获得积分10
31秒前
31秒前
lm发布了新的文献求助10
34秒前
36秒前
善学以致用应助孤独问旋采纳,获得10
36秒前
孙燕应助霸气安筠采纳,获得30
37秒前
李健应助科研通管家采纳,获得10
37秒前
汉堡包应助科研通管家采纳,获得10
37秒前
SYLH应助科研通管家采纳,获得20
37秒前
SYLH应助科研通管家采纳,获得10
37秒前
上官若男应助科研通管家采纳,获得10
37秒前
烟花应助科研通管家采纳,获得10
37秒前
丘比特应助科研通管家采纳,获得10
37秒前
SYLH应助科研通管家采纳,获得10
38秒前
CAOHOU应助科研通管家采纳,获得10
38秒前
SYLH应助科研通管家采纳,获得10
38秒前
CAOHOU应助科研通管家采纳,获得10
38秒前
SYLH应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
JamesPei应助科研通管家采纳,获得10
38秒前
ding应助科研通管家采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173