Trend-attribute forecasting of hourly PM2.5 trends in fifteen cities of Central England applying optimized machine learning feature selection

单变量 Lasso(编程语言) 特征选择 环境科学 气象学 支持向量机 预测建模 统计 多元统计 计算机科学 地理 机器学习 数学 万维网
作者
David A. Wood
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:356: 120561-120561
标识
DOI:10.1016/j.jenvman.2024.120561
摘要

Recorded particulate matter (PM2.5) hourly trends are compared for fifteen urban recording sites distributed across central England for the period 2018 to 2022. They include 10 urban-background and five urban-traffic (roadside) sites with some located within the same urban area. The sites all show consistent background and peak distributions with mean annual values and standard deviations higher for 2018 and 2019 than for 2020 to 2022. The objective of this study is to demonstrate that trend attributes extracted from hourly recorded univariate PM2.5 trends at these sites can be used to provide reliable short-term hourly predictions and provide valuable insight into the regional variations in the recorded trends. Fifteen trend attributes extracted from the prior 12 h (t-1 to t-12) of recorded PM2.5 data were compiled and used as input to four supervised machine learning models (SML) to forecast PM2.5 concentrations up to 13 h ahead (t0 to t+12). All recording sites delivered forecasts with similar ranges of error levels for specific hours ahead which are consistent with their PM2.5 recorded ranges. Forecasting results for four representative sites are presented in detail using models trained and cross-validated with 2020 and 2021 hourly data to forecast 2021 and 2022 hourly data, respectively. A novel optimized feature selection procedure using a suite of five optimizers is used to improve the efficiency of the forecasting models. The LASSO and support vector regression models generate the best and most generalizable hourly PM2.5 forecasts from trained and validated SML models with mean average error (MAE) of between ∼1 and ∼3 μg/m3 for t0 to t+3 h ahead. A novel overfitting indicator, exploiting the cross-validation mean values, demonstrates that these two models are not affected by overfitting. Forecasts for t+6 to t+12 h forward generate higher MAE values between ∼3 and ∼4 μg/m3 due to their tendency to underestimate some of the extreme PM2.5 peaks. These findings indicate that further model refinements are required to generate more reliable short-term predictions for the t+6 to t+24 h ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣辣辣辣辣辣完成签到 ,获得积分10
1秒前
2秒前
5秒前
乐观半兰完成签到,获得积分10
7秒前
7秒前
小丸子和zz完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
江雁完成签到,获得积分10
9秒前
坚定芯完成签到,获得积分10
9秒前
叶子兮完成签到,获得积分10
11秒前
幽默的妍完成签到 ,获得积分10
11秒前
Snow完成签到 ,获得积分10
11秒前
11秒前
liuyuh完成签到,获得积分10
12秒前
悠明夜月完成签到 ,获得积分10
13秒前
乌云乌云快走开完成签到,获得积分10
13秒前
你是我的唯一完成签到 ,获得积分10
13秒前
洁白的故人完成签到 ,获得积分10
15秒前
乐观半兰发布了新的文献求助10
15秒前
water应助科研通管家采纳,获得10
16秒前
zhang完成签到 ,获得积分10
16秒前
water应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
16秒前
鲲鹏完成签到 ,获得积分10
17秒前
大气建辉完成签到 ,获得积分10
17秒前
尛森完成签到,获得积分10
17秒前
机灵枕头完成签到 ,获得积分10
18秒前
糖糖科研顺利呀完成签到 ,获得积分10
20秒前
辣小扬完成签到 ,获得积分10
22秒前
传奇3应助水晶茶杯采纳,获得10
24秒前
幽默的素阴完成签到 ,获得积分10
28秒前
小小鱼完成签到 ,获得积分10
35秒前
35秒前
甜美砖家完成签到 ,获得积分10
37秒前
superspace完成签到,获得积分10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022