亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Trend-attribute forecasting of hourly PM2.5 trends in fifteen cities of Central England applying optimized machine learning feature selection

单变量 Lasso(编程语言) 特征选择 环境科学 气象学 支持向量机 预测建模 统计 多元统计 计算机科学 地理 机器学习 数学 万维网
作者
David A. Wood
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:356: 120561-120561
标识
DOI:10.1016/j.jenvman.2024.120561
摘要

Recorded particulate matter (PM2.5) hourly trends are compared for fifteen urban recording sites distributed across central England for the period 2018 to 2022. They include 10 urban-background and five urban-traffic (roadside) sites with some located within the same urban area. The sites all show consistent background and peak distributions with mean annual values and standard deviations higher for 2018 and 2019 than for 2020 to 2022. The objective of this study is to demonstrate that trend attributes extracted from hourly recorded univariate PM2.5 trends at these sites can be used to provide reliable short-term hourly predictions and provide valuable insight into the regional variations in the recorded trends. Fifteen trend attributes extracted from the prior 12 h (t-1 to t-12) of recorded PM2.5 data were compiled and used as input to four supervised machine learning models (SML) to forecast PM2.5 concentrations up to 13 h ahead (t0 to t+12). All recording sites delivered forecasts with similar ranges of error levels for specific hours ahead which are consistent with their PM2.5 recorded ranges. Forecasting results for four representative sites are presented in detail using models trained and cross-validated with 2020 and 2021 hourly data to forecast 2021 and 2022 hourly data, respectively. A novel optimized feature selection procedure using a suite of five optimizers is used to improve the efficiency of the forecasting models. The LASSO and support vector regression models generate the best and most generalizable hourly PM2.5 forecasts from trained and validated SML models with mean average error (MAE) of between ∼1 and ∼3 μg/m3 for t0 to t+3 h ahead. A novel overfitting indicator, exploiting the cross-validation mean values, demonstrates that these two models are not affected by overfitting. Forecasts for t+6 to t+12 h forward generate higher MAE values between ∼3 and ∼4 μg/m3 due to their tendency to underestimate some of the extreme PM2.5 peaks. These findings indicate that further model refinements are required to generate more reliable short-term predictions for the t+6 to t+24 h ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
enchanted发布了新的文献求助10
1秒前
栗栗栗子完成签到,获得积分10
2秒前
喝粥不用勺吖完成签到,获得积分20
2秒前
领导范儿应助domingo采纳,获得10
2秒前
个性的秀发完成签到,获得积分10
9秒前
11秒前
耳鼻喉不发言完成签到,获得积分10
13秒前
十六发布了新的文献求助10
15秒前
yj完成签到,获得积分10
18秒前
18秒前
天天完成签到 ,获得积分10
19秒前
20秒前
十六完成签到,获得积分10
22秒前
灵梦柠檬酸完成签到,获得积分10
26秒前
小m完成签到 ,获得积分10
31秒前
1分钟前
1分钟前
SPLjoker完成签到 ,获得积分10
1分钟前
Wsssss完成签到,获得积分10
1分钟前
奋斗的暖阳完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
ZL完成签到 ,获得积分10
1分钟前
1分钟前
Diamond完成签到 ,获得积分10
1分钟前
平淡如天发布了新的文献求助10
1分钟前
JamesPei应助平淡如天采纳,获得10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
El发布了新的文献求助10
2分钟前
某个不想做人的dio完成签到 ,获得积分10
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
Eden完成签到,获得积分10
2分钟前
2分钟前
烟花应助灵感大王喵采纳,获得200
2分钟前
夏夏完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
潘善若发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228