Trend-attribute forecasting of hourly PM2.5 trends in fifteen cities of Central England applying optimized machine learning feature selection

单变量 Lasso(编程语言) 特征选择 环境科学 气象学 支持向量机 预测建模 统计 多元统计 计算机科学 地理 机器学习 数学 万维网
作者
David A. Wood
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:356: 120561-120561
标识
DOI:10.1016/j.jenvman.2024.120561
摘要

Recorded particulate matter (PM2.5) hourly trends are compared for fifteen urban recording sites distributed across central England for the period 2018 to 2022. They include 10 urban-background and five urban-traffic (roadside) sites with some located within the same urban area. The sites all show consistent background and peak distributions with mean annual values and standard deviations higher for 2018 and 2019 than for 2020 to 2022. The objective of this study is to demonstrate that trend attributes extracted from hourly recorded univariate PM2.5 trends at these sites can be used to provide reliable short-term hourly predictions and provide valuable insight into the regional variations in the recorded trends. Fifteen trend attributes extracted from the prior 12 h (t-1 to t-12) of recorded PM2.5 data were compiled and used as input to four supervised machine learning models (SML) to forecast PM2.5 concentrations up to 13 h ahead (t0 to t+12). All recording sites delivered forecasts with similar ranges of error levels for specific hours ahead which are consistent with their PM2.5 recorded ranges. Forecasting results for four representative sites are presented in detail using models trained and cross-validated with 2020 and 2021 hourly data to forecast 2021 and 2022 hourly data, respectively. A novel optimized feature selection procedure using a suite of five optimizers is used to improve the efficiency of the forecasting models. The LASSO and support vector regression models generate the best and most generalizable hourly PM2.5 forecasts from trained and validated SML models with mean average error (MAE) of between ∼1 and ∼3 μg/m3 for t0 to t+3 h ahead. A novel overfitting indicator, exploiting the cross-validation mean values, demonstrates that these two models are not affected by overfitting. Forecasts for t+6 to t+12 h forward generate higher MAE values between ∼3 and ∼4 μg/m3 due to their tendency to underestimate some of the extreme PM2.5 peaks. These findings indicate that further model refinements are required to generate more reliable short-term predictions for the t+6 to t+24 h ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔先生完成签到,获得积分0
1秒前
oneonlycrown发布了新的文献求助10
1秒前
小马甲应助NicheFactor采纳,获得10
1秒前
公西翠萱完成签到,获得积分10
2秒前
水沐菁华完成签到,获得积分10
2秒前
橘子石榴应助典雅的迎波采纳,获得30
4秒前
承蒙大爱完成签到,获得积分10
4秒前
自觉柠檬完成签到 ,获得积分10
4秒前
5秒前
zwenng完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
善学以致用应助热情冰凡采纳,获得10
7秒前
高贵火车发布了新的文献求助10
8秒前
Lucas应助冰冰采纳,获得10
8秒前
du2002完成签到,获得积分10
8秒前
9秒前
9秒前
ggg关闭了ggg文献求助
10秒前
典雅雅容完成签到,获得积分10
10秒前
caibi完成签到,获得积分10
11秒前
zn发布了新的文献求助10
11秒前
jackish完成签到,获得积分10
12秒前
呆萌的念柏完成签到,获得积分20
12秒前
skskysky发布了新的文献求助10
12秒前
tao发布了新的文献求助10
12秒前
13秒前
烟花应助小香香采纳,获得10
13秒前
丫头完成签到,获得积分10
13秒前
Channingh完成签到 ,获得积分10
13秒前
创创完成签到,获得积分10
13秒前
嘀嘀嘀发布了新的文献求助10
13秒前
13秒前
14秒前
奥沙利楠完成签到,获得积分10
14秒前
双马尾小男生应助Fan采纳,获得10
14秒前
caibi发布了新的文献求助10
15秒前
君子兰发布了新的文献求助10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155301
求助须知:如何正确求助?哪些是违规求助? 2806126
关于积分的说明 7868151
捐赠科研通 2464545
什么是DOI,文献DOI怎么找? 1311866
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601862