生物制造
过程(计算)
计算机科学
风险分析(工程)
质量(理念)
人口
消耗品
业务
营销
生物技术
人口学
社会学
生物
操作系统
哲学
认识论
作者
Louis Crowley,Paul Cashen,Marc Noverraz,Martin Lobedann,Piergiuseppe Nestola
摘要
Abstract A demand for process intensification in biomanufacturing has increased over the past decade due to the ever‐expanding market for biopharmaceuticals. This is largely driven by factors such as a surge in biosimilars as patents expire, an aging population, and a rise in chronic diseases. With these market demands, pressure upon biomanufacturers to produce quality products with rapid turnaround escalates proportionally. Process intensification in biomanufacturing has been well received and accepted across industry based on the demonstration of its benefits of improved productivity and efficiency, while also reducing the cost of goods. However, while these benefits have been shown empirically, the challenges of adopting process intensification into industry remain, from smaller independent start‐up to big pharma. Traditionally, moving from batch to a process intensification scheme has been viewed as an “all or nothing” approach involving continuous bioprocessing, in which the factors of complexity and significant capital costs hinder its adoption. In addition, the literature is crowded with a variety of terms used to describe process intensification (continuous, periodic counter‐current, connected, intensified, steady‐state, etc.). Often, these terms are used inappropriately or as synonyms, which generates confusion in the field. Through a detailed review of current state‐of‐the‐art systems, consumables, and process intensification case studies, we herein propose a defined approach in the implementation of downstream process intensification through a standardized nomenclature and viewing it as distinct independent levels. These can function separately as intensified single‐unit operations or be built upon by integration with other process steps allowing for simple, incremental, cost‐effective implementation of process intensification in the manufacturing of biopharmaceuticals.
科研通智能强力驱动
Strongly Powered by AbleSci AI