生物标志物
人工智能
计算机科学
模式
人口
医学
生物
社会科学
生物化学
环境卫生
社会学
作者
Jinzhuo Wang,Yuanxu Gao,Fangfei Wang,Simiao Zeng,Jiahui Li,Hanpei Miao,Taorui Wang,Jin Zeng,Daniel T. Baptista‐Hon,Olivia Monteiro,Taihua Guan,Linling Cheng,Yuxing Lu,Zhengchao Luo,Ming Li,Jian‐Kang Zhu,Sheng Nie,Kang Zhang,Yong Zhou
标识
DOI:10.1073/pnas.2308812120
摘要
Aging in an individual refers to the temporal change, mostly decline, in the body’s ability to meet physiological demands. Biological age (BA) is a biomarker of chronological aging and can be used to stratify populations to predict certain age-related chronic diseases. BA can be predicted from biomedical features such as brain MRI, retinal, or facial images, but the inherent heterogeneity in the aging process limits the usefulness of BA predicted from individual body systems. In this paper, we developed a multimodal Transformer–based architecture with cross-attention which was able to combine facial, tongue, and retinal images to estimate BA. We trained our model using facial, tongue, and retinal images from 11,223 healthy subjects and demonstrated that using a fusion of the three image modalities achieved the most accurate BA predictions. We validated our approach on a test population of 2,840 individuals with six chronic diseases and obtained significant difference between chronological age and BA (AgeDiff) than that of healthy subjects. We showed that AgeDiff has the potential to be utilized as a standalone biomarker or conjunctively alongside other known factors for risk stratification and progression prediction of chronic diseases. Our results therefore highlight the feasibility of using multimodal images to estimate and interrogate the aging process.
科研通智能强力驱动
Strongly Powered by AbleSci AI