Accurate estimation of biological age and its application in disease prediction using a multimodal image Transformer system

生物标志物 人工智能 计算机科学 模式 人口 医学 生物 社会科学 生物化学 环境卫生 社会学
作者
Jinzhuo Wang,Yuanxu Gao,Fangfei Wang,Simiao Zeng,Jiahui Li,Hanpei Miao,Taorui Wang,Jin Zeng,Daniel T. Baptista‐Hon,Olivia Monteiro,Taihua Guan,Linling Cheng,Yuxing Lu,Zhengchao Luo,Ming Li,Jian‐Kang Zhu,Sheng Nie,Kang Zhang,Yong Zhou
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (3) 被引量:5
标识
DOI:10.1073/pnas.2308812120
摘要

Aging in an individual refers to the temporal change, mostly decline, in the body’s ability to meet physiological demands. Biological age (BA) is a biomarker of chronological aging and can be used to stratify populations to predict certain age-related chronic diseases. BA can be predicted from biomedical features such as brain MRI, retinal, or facial images, but the inherent heterogeneity in the aging process limits the usefulness of BA predicted from individual body systems. In this paper, we developed a multimodal Transformer–based architecture with cross-attention which was able to combine facial, tongue, and retinal images to estimate BA. We trained our model using facial, tongue, and retinal images from 11,223 healthy subjects and demonstrated that using a fusion of the three image modalities achieved the most accurate BA predictions. We validated our approach on a test population of 2,840 individuals with six chronic diseases and obtained significant difference between chronological age and BA (AgeDiff) than that of healthy subjects. We showed that AgeDiff has the potential to be utilized as a standalone biomarker or conjunctively alongside other known factors for risk stratification and progression prediction of chronic diseases. Our results therefore highlight the feasibility of using multimodal images to estimate and interrogate the aging process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiM发布了新的文献求助10
1秒前
1秒前
毛豆爸爸应助蒙圈的小倩采纳,获得10
2秒前
Anna发布了新的文献求助50
2秒前
淳之风发布了新的文献求助10
3秒前
Lucas应助超级幻然采纳,获得10
4秒前
贺无剑发布了新的文献求助10
4秒前
申思发布了新的文献求助10
4秒前
让一让关注了科研通微信公众号
5秒前
6秒前
呆瓜发布了新的文献求助10
6秒前
8秒前
8秒前
欢呼白晴完成签到 ,获得积分10
8秒前
瘦笔焚香完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助Mian采纳,获得10
9秒前
healer完成签到,获得积分20
10秒前
10秒前
坚果爱吃坚果完成签到,获得积分10
11秒前
11秒前
曾经二娘发布了新的文献求助10
11秒前
调研昵称发布了新的文献求助50
12秒前
12秒前
雨水发布了新的文献求助10
13秒前
14秒前
14秒前
gghh完成签到,获得积分10
14秒前
15秒前
香蕉以菱发布了新的文献求助10
15秒前
15秒前
Apple发布了新的文献求助10
15秒前
知了睡醒了完成签到 ,获得积分10
15秒前
顾矜应助纪震宇采纳,获得10
16秒前
pluto应助起风了采纳,获得10
16秒前
16秒前
17秒前
aries完成签到,获得积分10
18秒前
求助发布了新的文献求助10
18秒前
不安又蓝发布了新的文献求助20
18秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570