Accurate estimation of biological age and its application in disease prediction using a multimodal image Transformer system

生物标志物 人工智能 计算机科学 模式 人口 医学 生物 社会科学 生物化学 环境卫生 社会学
作者
Jinzhuo Wang,Yuanxu Gao,Fangfei Wang,Simiao Zeng,Jiahui Li,Hanpei Miao,Taorui Wang,Jin Zeng,Daniel T. Baptista‐Hon,Olivia Monteiro,Taihua Guan,Linling Cheng,Yuxing Lu,Zhengchao Luo,Ming Li,Jian‐Kang Zhu,Sheng Nie,Kang Zhang,Yong Zhou
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (3) 被引量:9
标识
DOI:10.1073/pnas.2308812120
摘要

Aging in an individual refers to the temporal change, mostly decline, in the body’s ability to meet physiological demands. Biological age (BA) is a biomarker of chronological aging and can be used to stratify populations to predict certain age-related chronic diseases. BA can be predicted from biomedical features such as brain MRI, retinal, or facial images, but the inherent heterogeneity in the aging process limits the usefulness of BA predicted from individual body systems. In this paper, we developed a multimodal Transformer–based architecture with cross-attention which was able to combine facial, tongue, and retinal images to estimate BA. We trained our model using facial, tongue, and retinal images from 11,223 healthy subjects and demonstrated that using a fusion of the three image modalities achieved the most accurate BA predictions. We validated our approach on a test population of 2,840 individuals with six chronic diseases and obtained significant difference between chronological age and BA (AgeDiff) than that of healthy subjects. We showed that AgeDiff has the potential to be utilized as a standalone biomarker or conjunctively alongside other known factors for risk stratification and progression prediction of chronic diseases. Our results therefore highlight the feasibility of using multimodal images to estimate and interrogate the aging process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lfl关注了科研通微信公众号
刚刚
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
菜饼哥发布了新的文献求助10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
ting应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
arniu2008应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
ting应助科研通管家采纳,获得10
1秒前
靓丽三德应助科研通管家采纳,获得10
1秒前
hqyqh1314完成签到,获得积分10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得30
2秒前
Jason应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
ding应助Natasha采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
情怀应助zhou国兵采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
热情薯片完成签到,获得积分10
2秒前
Jason应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718886
求助须知:如何正确求助?哪些是违规求助? 5254421
关于积分的说明 15287351
捐赠科研通 4868927
什么是DOI,文献DOI怎么找? 2614473
邀请新用户注册赠送积分活动 1564399
关于科研通互助平台的介绍 1521791