A deep learning approach combining DeepLabV3+ and improved YOLOv5 to detect dairy cow mastitis

乳腺炎 人工智能 奶牛 乳房 模式识别(心理学) 数学 计算机科学 动物科学 医学 生物 病理
作者
Yanchao Wang,Mengyuan Chu,Kang Xi,Gang Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108507-108507 被引量:12
标识
DOI:10.1016/j.compag.2023.108507
摘要

Dairy cow mastitis has a great impact on the productivity of dairy cows and the profits of livestock farms. Early detection is of great significance to improve the efficiency of mastitis treatment. However, due to the low resolution of thermal infrared images and the complexity of the living environment of dairy cows, it is difficult to detect the eyes and udders of cows, which reduces the detection accuracy of mastitis. To solve this problem, this paper proposes a two-stage model (DCYOLO) integrating the DeepLabV3 + semantic segmentation network and an improved YOLOv5 target recognition network, which is used to detect the eyes and udders of dairy cows under complex background and applied to the severity classification of dairy cow mastitis. In the first stage, the DeepLabV3 + model was used to segment the eyes and udders of dairy cows from thermal infrared images. In the second stage, the segmented image was input into the target recognition YOLOv5 network for key parts recognition. Finally, to further improve the detection accuracy of the model, a convolutional block attention module (CBAM) was added at the end of the main part of the YOLOv5 model. After comparing different semantic segmentation and target recognition networks, the DeepLabV3 + network and YOLOv5 network performed best. The mIoU and mean pixel accuracy (mPA) of the DeepLabV3 + network reached 86.98 % and 92.92 %, respectively. The mean average precision (mAP) and F1 scores of the YOLOv5 network for unsegmented thermal infrared images reached 93.4 % and 90.9 %, respectively. The CBAM-added YOLOv5 (CAYOLOv5) model was combined with the DeepLabV3 + model. Compared with the single YOLOv5 model, the mAP and F1 scores of DCYOLO increased by 5.4 % and 5.3 %, respectively. Therefore, the proposed model can achieve more accurate positioning of key parts of dairy cows. Based on this model, the eye and udder temperature differences of 50 dairy cows were extracted for mastitis detection, and the detection results were compared with the results of the somatic cell count (SCC) approach. The results showed that the classification accuracy of mastitis was 86 %, and the average sensitivity and specificity were 79.41 % and 92.49 %, respectively. The dairy cow mastitis detection method based on the two-stage model can accurately locate the key parts of dairy cows and realize the automatic detection and classification of dairy cow mastitis, and the accuracy is high.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助灵巧妙柏采纳,获得10
刚刚
zhh完成签到,获得积分10
刚刚
vin应助肥而不腻的羚羊采纳,获得10
2秒前
华仔应助怕孤单的破茧采纳,获得10
3秒前
5秒前
CipherSage应助672采纳,获得10
6秒前
dsjlove完成签到,获得积分20
7秒前
8秒前
等一只ya完成签到,获得积分10
8秒前
虚影完成签到,获得积分10
9秒前
伍铭完成签到 ,获得积分10
12秒前
俏皮的绝山完成签到,获得积分10
12秒前
12秒前
孙燕应助JIANGSHUI采纳,获得50
13秒前
唐禹嘉完成签到 ,获得积分10
14秒前
小超发布了新的文献求助10
17秒前
17秒前
科研通AI5应助YJ888采纳,获得10
18秒前
老干部完成签到,获得积分10
20秒前
随风完成签到,获得积分10
21秒前
22秒前
ycool完成签到 ,获得积分10
23秒前
24秒前
hxy123完成签到,获得积分10
24秒前
24秒前
ablesic.rong发布了新的文献求助10
26秒前
张绵羊完成签到 ,获得积分10
28秒前
香蕉觅云应助booooo采纳,获得10
28秒前
hxy123发布了新的文献求助10
28秒前
29秒前
22222发布了新的文献求助30
30秒前
辛辛应助来来采纳,获得10
31秒前
修辛发布了新的文献求助10
32秒前
33秒前
热心市民小红花应助bbh采纳,获得10
35秒前
ED应助机智太阳采纳,获得10
35秒前
臻灏完成签到,获得积分10
35秒前
英俊白莲完成签到,获得积分10
36秒前
36秒前
痴情的茈发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176