A deep learning approach combining DeepLabV3+ and improved YOLOv5 to detect dairy cow mastitis

乳腺炎 人工智能 奶牛 乳房 模式识别(心理学) 数学 计算机科学 动物科学 医学 生物 病理
作者
Yanchao Wang,Mengyuan Chu,Kang Xi,Gang Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108507-108507 被引量:12
标识
DOI:10.1016/j.compag.2023.108507
摘要

Dairy cow mastitis has a great impact on the productivity of dairy cows and the profits of livestock farms. Early detection is of great significance to improve the efficiency of mastitis treatment. However, due to the low resolution of thermal infrared images and the complexity of the living environment of dairy cows, it is difficult to detect the eyes and udders of cows, which reduces the detection accuracy of mastitis. To solve this problem, this paper proposes a two-stage model (DCYOLO) integrating the DeepLabV3 + semantic segmentation network and an improved YOLOv5 target recognition network, which is used to detect the eyes and udders of dairy cows under complex background and applied to the severity classification of dairy cow mastitis. In the first stage, the DeepLabV3 + model was used to segment the eyes and udders of dairy cows from thermal infrared images. In the second stage, the segmented image was input into the target recognition YOLOv5 network for key parts recognition. Finally, to further improve the detection accuracy of the model, a convolutional block attention module (CBAM) was added at the end of the main part of the YOLOv5 model. After comparing different semantic segmentation and target recognition networks, the DeepLabV3 + network and YOLOv5 network performed best. The mIoU and mean pixel accuracy (mPA) of the DeepLabV3 + network reached 86.98 % and 92.92 %, respectively. The mean average precision (mAP) and F1 scores of the YOLOv5 network for unsegmented thermal infrared images reached 93.4 % and 90.9 %, respectively. The CBAM-added YOLOv5 (CAYOLOv5) model was combined with the DeepLabV3 + model. Compared with the single YOLOv5 model, the mAP and F1 scores of DCYOLO increased by 5.4 % and 5.3 %, respectively. Therefore, the proposed model can achieve more accurate positioning of key parts of dairy cows. Based on this model, the eye and udder temperature differences of 50 dairy cows were extracted for mastitis detection, and the detection results were compared with the results of the somatic cell count (SCC) approach. The results showed that the classification accuracy of mastitis was 86 %, and the average sensitivity and specificity were 79.41 % and 92.49 %, respectively. The dairy cow mastitis detection method based on the two-stage model can accurately locate the key parts of dairy cows and realize the automatic detection and classification of dairy cow mastitis, and the accuracy is high.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘欣悦完成签到 ,获得积分10
刚刚
玥来玥好发布了新的文献求助10
1秒前
1秒前
英姑应助玩命的兔子采纳,获得10
2秒前
2秒前
忠诚卫士完成签到,获得积分10
2秒前
美满向薇发布了新的文献求助10
3秒前
落后翠柏发布了新的文献求助10
3秒前
丘比特应助冰点采纳,获得10
3秒前
ihuu完成签到,获得积分10
4秒前
4秒前
4秒前
gqz发布了新的文献求助10
4秒前
顶刊我来了完成签到,获得积分10
5秒前
林岳完成签到,获得积分10
5秒前
脑洞疼应助范yx采纳,获得10
6秒前
华仔应助zhaosibo020118采纳,获得10
7秒前
8秒前
林岳发布了新的文献求助10
8秒前
搜集达人应助Nov采纳,获得10
8秒前
9秒前
10秒前
等你下课完成签到,获得积分20
11秒前
科研通AI6应助佚名采纳,获得10
11秒前
11秒前
Akim应助落后翠柏采纳,获得10
11秒前
12秒前
哆啦B梦给哆啦B梦的求助进行了留言
13秒前
锦慜发布了新的文献求助30
13秒前
等你下课发布了新的文献求助10
14秒前
MeetAgainLZH发布了新的文献求助10
14秒前
CodeCraft应助老实的采蓝采纳,获得10
14秒前
gqz完成签到,获得积分10
15秒前
蓦然发布了新的文献求助10
15秒前
SciGPT应助朴实的南露采纳,获得10
15秒前
LYD666发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
七月晴完成签到 ,获得积分10
18秒前
Akim应助4564321采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704