A deep learning approach combining DeepLabV3+ and improved YOLOv5 to detect dairy cow mastitis

乳腺炎 人工智能 奶牛 乳房 模式识别(心理学) 数学 计算机科学 动物科学 医学 生物 病理
作者
Yanchao Wang,Mengyuan Chu,Kang Xi,Gang Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108507-108507 被引量:12
标识
DOI:10.1016/j.compag.2023.108507
摘要

Dairy cow mastitis has a great impact on the productivity of dairy cows and the profits of livestock farms. Early detection is of great significance to improve the efficiency of mastitis treatment. However, due to the low resolution of thermal infrared images and the complexity of the living environment of dairy cows, it is difficult to detect the eyes and udders of cows, which reduces the detection accuracy of mastitis. To solve this problem, this paper proposes a two-stage model (DCYOLO) integrating the DeepLabV3 + semantic segmentation network and an improved YOLOv5 target recognition network, which is used to detect the eyes and udders of dairy cows under complex background and applied to the severity classification of dairy cow mastitis. In the first stage, the DeepLabV3 + model was used to segment the eyes and udders of dairy cows from thermal infrared images. In the second stage, the segmented image was input into the target recognition YOLOv5 network for key parts recognition. Finally, to further improve the detection accuracy of the model, a convolutional block attention module (CBAM) was added at the end of the main part of the YOLOv5 model. After comparing different semantic segmentation and target recognition networks, the DeepLabV3 + network and YOLOv5 network performed best. The mIoU and mean pixel accuracy (mPA) of the DeepLabV3 + network reached 86.98 % and 92.92 %, respectively. The mean average precision (mAP) and F1 scores of the YOLOv5 network for unsegmented thermal infrared images reached 93.4 % and 90.9 %, respectively. The CBAM-added YOLOv5 (CAYOLOv5) model was combined with the DeepLabV3 + model. Compared with the single YOLOv5 model, the mAP and F1 scores of DCYOLO increased by 5.4 % and 5.3 %, respectively. Therefore, the proposed model can achieve more accurate positioning of key parts of dairy cows. Based on this model, the eye and udder temperature differences of 50 dairy cows were extracted for mastitis detection, and the detection results were compared with the results of the somatic cell count (SCC) approach. The results showed that the classification accuracy of mastitis was 86 %, and the average sensitivity and specificity were 79.41 % and 92.49 %, respectively. The dairy cow mastitis detection method based on the two-stage model can accurately locate the key parts of dairy cows and realize the automatic detection and classification of dairy cow mastitis, and the accuracy is high.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
香蕉完成签到,获得积分20
刚刚
June发布了新的文献求助10
1秒前
1秒前
yyy完成签到,获得积分10
2秒前
lessismore完成签到,获得积分20
2秒前
风趣采白完成签到,获得积分10
2秒前
马瑞完成签到,获得积分10
2秒前
领导范儿应助xuanku采纳,获得10
2秒前
纪外绣完成签到,获得积分10
2秒前
轻松叫兽完成签到,获得积分10
3秒前
czs完成签到,获得积分10
3秒前
3秒前
5秒前
汉堡完成签到 ,获得积分10
5秒前
qys完成签到,获得积分10
5秒前
马瑞发布了新的文献求助10
6秒前
马甲甲完成签到,获得积分10
6秒前
lessismore发布了新的文献求助10
7秒前
活泼的南风完成签到,获得积分10
7秒前
YUU完成签到,获得积分10
7秒前
cc完成签到,获得积分10
7秒前
Spice完成签到 ,获得积分10
8秒前
情绪稳定的座山雕完成签到,获得积分10
8秒前
小安完成签到,获得积分10
8秒前
chendahuanhuan完成签到,获得积分10
9秒前
含蓄听南完成签到 ,获得积分10
10秒前
罗擎完成签到,获得积分10
11秒前
wangbw完成签到,获得积分10
12秒前
芒果豆豆完成签到,获得积分10
12秒前
传奇3应助sure采纳,获得10
12秒前
13秒前
HF完成签到,获得积分10
13秒前
称心的不言应助满意西牛采纳,获得10
13秒前
iccv完成签到 ,获得积分10
13秒前
居居子完成签到,获得积分10
14秒前
15秒前
addi111完成签到,获得积分10
15秒前
陈肖楠完成签到,获得积分10
16秒前
JamesPei应助dididi采纳,获得10
17秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387611
求助须知:如何正确求助?哪些是违规求助? 4509621
关于积分的说明 14032074
捐赠科研通 4420457
什么是DOI,文献DOI怎么找? 2428263
邀请新用户注册赠送积分活动 1420857
关于科研通互助平台的介绍 1400038