A deep learning approach combining DeepLabV3+ and improved YOLOv5 to detect dairy cow mastitis

乳腺炎 人工智能 奶牛 乳房 模式识别(心理学) 数学 计算机科学 动物科学 医学 生物 病理
作者
Yanchao Wang,Mengyuan Chu,Kang Xi,Gang Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108507-108507 被引量:2
标识
DOI:10.1016/j.compag.2023.108507
摘要

Dairy cow mastitis has a great impact on the productivity of dairy cows and the profits of livestock farms. Early detection is of great significance to improve the efficiency of mastitis treatment. However, due to the low resolution of thermal infrared images and the complexity of the living environment of dairy cows, it is difficult to detect the eyes and udders of cows, which reduces the detection accuracy of mastitis. To solve this problem, this paper proposes a two-stage model (DCYOLO) integrating the DeepLabV3 + semantic segmentation network and an improved YOLOv5 target recognition network, which is used to detect the eyes and udders of dairy cows under complex background and applied to the severity classification of dairy cow mastitis. In the first stage, the DeepLabV3 + model was used to segment the eyes and udders of dairy cows from thermal infrared images. In the second stage, the segmented image was input into the target recognition YOLOv5 network for key parts recognition. Finally, to further improve the detection accuracy of the model, a convolutional block attention module (CBAM) was added at the end of the main part of the YOLOv5 model. After comparing different semantic segmentation and target recognition networks, the DeepLabV3 + network and YOLOv5 network performed best. The mIoU and mean pixel accuracy (mPA) of the DeepLabV3 + network reached 86.98 % and 92.92 %, respectively. The mean average precision (mAP) and F1 scores of the YOLOv5 network for unsegmented thermal infrared images reached 93.4 % and 90.9 %, respectively. The CBAM-added YOLOv5 (CAYOLOv5) model was combined with the DeepLabV3 + model. Compared with the single YOLOv5 model, the mAP and F1 scores of DCYOLO increased by 5.4 % and 5.3 %, respectively. Therefore, the proposed model can achieve more accurate positioning of key parts of dairy cows. Based on this model, the eye and udder temperature differences of 50 dairy cows were extracted for mastitis detection, and the detection results were compared with the results of the somatic cell count (SCC) approach. The results showed that the classification accuracy of mastitis was 86 %, and the average sensitivity and specificity were 79.41 % and 92.49 %, respectively. The dairy cow mastitis detection method based on the two-stage model can accurately locate the key parts of dairy cows and realize the automatic detection and classification of dairy cow mastitis, and the accuracy is high.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助wyj采纳,获得10
1秒前
科研通AI2S应助iuhgnor采纳,获得10
2秒前
优雅的怀莲完成签到,获得积分10
3秒前
轻松博超完成签到,获得积分10
3秒前
singlestrand完成签到,获得积分10
3秒前
恰饭完成签到,获得积分10
3秒前
king完成签到,获得积分10
4秒前
L_x完成签到 ,获得积分10
4秒前
5秒前
111完成签到 ,获得积分10
5秒前
暮霭沉沉应助山山而旧采纳,获得10
5秒前
smile完成签到 ,获得积分10
6秒前
cc应助负责的调料汁采纳,获得10
6秒前
优秀不愁完成签到,获得积分10
6秒前
超然度陈完成签到,获得积分10
7秒前
sow完成签到,获得积分10
7秒前
小马甲应助落后语山采纳,获得10
8秒前
Jaylou完成签到,获得积分10
8秒前
zhing发布了新的文献求助10
8秒前
新小pi完成签到,获得积分10
8秒前
lolo发布了新的文献求助10
8秒前
mm完成签到,获得积分10
8秒前
万能图书馆应助laopei2001采纳,获得10
9秒前
affff完成签到 ,获得积分10
9秒前
英俊的铭应助iufan采纳,获得10
10秒前
10秒前
NexusExplorer应助bigchui采纳,获得10
11秒前
11秒前
1218关注了科研通微信公众号
11秒前
沉默的钻石完成签到,获得积分10
11秒前
stuffmatter应助王小小采纳,获得30
12秒前
12秒前
Aikesi完成签到,获得积分10
13秒前
13秒前
褚乘风发布了新的文献求助10
14秒前
WWXWWX应助hyjhhy采纳,获得10
14秒前
14秒前
14秒前
haha完成签到 ,获得积分10
15秒前
Jasper应助太叔明辉采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134302
求助须知:如何正确求助?哪些是违规求助? 2785212
关于积分的说明 7770748
捐赠科研通 2440808
什么是DOI,文献DOI怎么找? 1297536
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792