亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning approach combining DeepLabV3+ and improved YOLOv5 to detect dairy cow mastitis

乳腺炎 人工智能 奶牛 乳房 模式识别(心理学) 数学 计算机科学 动物科学 医学 生物 病理
作者
Yanchao Wang,Mengyuan Chu,Kang Xi,Gang Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108507-108507 被引量:12
标识
DOI:10.1016/j.compag.2023.108507
摘要

Dairy cow mastitis has a great impact on the productivity of dairy cows and the profits of livestock farms. Early detection is of great significance to improve the efficiency of mastitis treatment. However, due to the low resolution of thermal infrared images and the complexity of the living environment of dairy cows, it is difficult to detect the eyes and udders of cows, which reduces the detection accuracy of mastitis. To solve this problem, this paper proposes a two-stage model (DCYOLO) integrating the DeepLabV3 + semantic segmentation network and an improved YOLOv5 target recognition network, which is used to detect the eyes and udders of dairy cows under complex background and applied to the severity classification of dairy cow mastitis. In the first stage, the DeepLabV3 + model was used to segment the eyes and udders of dairy cows from thermal infrared images. In the second stage, the segmented image was input into the target recognition YOLOv5 network for key parts recognition. Finally, to further improve the detection accuracy of the model, a convolutional block attention module (CBAM) was added at the end of the main part of the YOLOv5 model. After comparing different semantic segmentation and target recognition networks, the DeepLabV3 + network and YOLOv5 network performed best. The mIoU and mean pixel accuracy (mPA) of the DeepLabV3 + network reached 86.98 % and 92.92 %, respectively. The mean average precision (mAP) and F1 scores of the YOLOv5 network for unsegmented thermal infrared images reached 93.4 % and 90.9 %, respectively. The CBAM-added YOLOv5 (CAYOLOv5) model was combined with the DeepLabV3 + model. Compared with the single YOLOv5 model, the mAP and F1 scores of DCYOLO increased by 5.4 % and 5.3 %, respectively. Therefore, the proposed model can achieve more accurate positioning of key parts of dairy cows. Based on this model, the eye and udder temperature differences of 50 dairy cows were extracted for mastitis detection, and the detection results were compared with the results of the somatic cell count (SCC) approach. The results showed that the classification accuracy of mastitis was 86 %, and the average sensitivity and specificity were 79.41 % and 92.49 %, respectively. The dairy cow mastitis detection method based on the two-stage model can accurately locate the key parts of dairy cows and realize the automatic detection and classification of dairy cow mastitis, and the accuracy is high.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZXneuro完成签到,获得积分10
10秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
酷酷问夏完成签到 ,获得积分10
21秒前
hb发布了新的文献求助10
24秒前
撒旦asd发布了新的文献求助10
31秒前
科研通AI6.1应助LucyMartinez采纳,获得20
34秒前
爆米花应助读书的时候采纳,获得10
41秒前
53秒前
1分钟前
Ava应助读书的时候采纳,获得10
1分钟前
aaa完成签到,获得积分10
1分钟前
撒旦asd发布了新的文献求助10
1分钟前
科研通AI6.1应助hb采纳,获得10
1分钟前
1分钟前
六爻发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助撒旦asd采纳,获得10
1分钟前
1分钟前
Lucas应助读书的时候采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得100
2分钟前
充电宝应助科研通管家采纳,获得30
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
bkagyin应助zdseu采纳,获得10
2分钟前
2分钟前
Hello应助读书的时候采纳,获得10
2分钟前
zdseu发布了新的文献求助10
2分钟前
小红发布了新的文献求助10
3分钟前
3分钟前
每天都要开心完成签到 ,获得积分10
3分钟前
sdshi完成签到,获得积分10
3分钟前
3分钟前
阿星完成签到,获得积分10
3分钟前
3分钟前
阿星发布了新的文献求助10
3分钟前
sdshi发布了新的文献求助10
3分钟前
Tania完成签到,获得积分10
3分钟前
科研通AI6.1应助老杨采纳,获得30
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739702
求助须知:如何正确求助?哪些是违规求助? 5388560
关于积分的说明 15339909
捐赠科研通 4882093
什么是DOI,文献DOI怎么找? 2624126
邀请新用户注册赠送积分活动 1572850
关于科研通互助平台的介绍 1529667