Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning

深度学习 燃料电池 氢燃料 人工智能 稳健性(进化) 卷积神经网络 计算机科学 商业化 机器学习 人工神经网络 工程类 化学 基因 法学 生物化学 化学工程 政治学
作者
Wenbin He,Ting Liu,Wuyi Ming,Zongze Li,Jinguang Du,Xiaoke Li,Xudong Guo,Peiyan Sun
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:192: 114193-114193 被引量:17
标识
DOI:10.1016/j.rser.2023.114193
摘要

Hydrogen fuel cells are promising power sources that directly transform the chemical energy produced by the chemical reaction of hydrogen and oxygen into electrical energy. However, the life of fuel cells is the main factor restricting their large-scale commercialization; therefore, it is crucial to predict their remaining useful life (RUL). In recent years, deep learning methods for RUL prediction has shown promising research prospects. Deep learning methods can improve the accuracy and robustness of predictions. In this study, the RUL prediction of hydrogen fuel cells based on deep learning methods was systematically reviewed, and various methods were compared. First, the characteristics and applications of different types of fuel cells were reviewed, and the benefits and drawbacks of three RUL prediction methods were compared. Second, different deep learning methods used to predict fuel cell RUL, such as convolutional neural networks (CNN), recurrent neural networks (RNN), Transformer, other algorithms, and fusion algorithms, were systematically reviewed, and the performance and characteristics of different algorithms were analyzed. Finally, the aforementioned research was discussed, and future development trends were prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小胡不糊hh完成签到,获得积分10
刚刚
菠萝派发布了新的文献求助10
2秒前
LiaoKaijian发布了新的文献求助10
4秒前
4秒前
张聪完成签到,获得积分10
5秒前
bkagyin应助一麯肝肠斷采纳,获得10
6秒前
6秒前
sky2019发布了新的文献求助10
7秒前
9秒前
10秒前
12秒前
ryan发布了新的文献求助10
13秒前
呢呢完成签到,获得积分10
14秒前
14秒前
呜呜呜呜呜呜呜呜完成签到,获得积分10
15秒前
海岛发布了新的文献求助10
16秒前
cossen完成签到,获得积分10
17秒前
17秒前
zero桥完成签到,获得积分10
18秒前
20秒前
23秒前
23秒前
Starwalker应助王蓉采纳,获得20
24秒前
万能图书馆应助xiaoya采纳,获得10
28秒前
不会起名完成签到 ,获得积分10
28秒前
yar应助时光采纳,获得10
29秒前
Nicole完成签到 ,获得积分10
29秒前
渔家傲发布了新的文献求助10
30秒前
32秒前
英俊的铭应助海岛采纳,获得10
34秒前
Ma发布了新的文献求助10
36秒前
认真的飞扬给认真的飞扬的求助进行了留言
38秒前
38秒前
39秒前
Allen完成签到,获得积分10
39秒前
杨玉轩发布了新的文献求助10
39秒前
Erica完成签到,获得积分10
41秒前
42秒前
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313711
求助须知:如何正确求助?哪些是违规求助? 2946043
关于积分的说明 8528118
捐赠科研通 2621632
什么是DOI,文献DOI怎么找? 1433987
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650651