Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning

深度学习 燃料电池 氢燃料 人工智能 稳健性(进化) 卷积神经网络 计算机科学 商业化 机器学习 人工神经网络 工程类 化学 基因 法学 生物化学 化学工程 政治学
作者
Wenbin He,Ting Liu,Wuyi Ming,Zongze Li,Jinguang Du,Xiaoke Li,Xudong Guo,Peiyan Sun
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:192: 114193-114193 被引量:63
标识
DOI:10.1016/j.rser.2023.114193
摘要

Hydrogen fuel cells are promising power sources that directly transform the chemical energy produced by the chemical reaction of hydrogen and oxygen into electrical energy. However, the life of fuel cells is the main factor restricting their large-scale commercialization; therefore, it is crucial to predict their remaining useful life (RUL). In recent years, deep learning methods for RUL prediction has shown promising research prospects. Deep learning methods can improve the accuracy and robustness of predictions. In this study, the RUL prediction of hydrogen fuel cells based on deep learning methods was systematically reviewed, and various methods were compared. First, the characteristics and applications of different types of fuel cells were reviewed, and the benefits and drawbacks of three RUL prediction methods were compared. Second, different deep learning methods used to predict fuel cell RUL, such as convolutional neural networks (CNN), recurrent neural networks (RNN), Transformer, other algorithms, and fusion algorithms, were systematically reviewed, and the performance and characteristics of different algorithms were analyzed. Finally, the aforementioned research was discussed, and future development trends were prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助youyuer采纳,获得10
1秒前
1秒前
2秒前
打打应助kyJYbs采纳,获得10
3秒前
grmqgq发布了新的文献求助10
3秒前
淡定的彩虹完成签到,获得积分10
3秒前
李爱国应助呆萌的傲旋采纳,获得10
4秒前
三家村猛虎完成签到 ,获得积分10
4秒前
独特浩然发布了新的文献求助20
4秒前
迟迟完成签到,获得积分10
5秒前
李健应助十一采纳,获得10
5秒前
Orange应助十一采纳,获得10
5秒前
顾矜应助十一采纳,获得10
5秒前
万能图书馆应助十一采纳,获得10
5秒前
科研通AI6应助十一采纳,获得10
5秒前
Orange应助十一采纳,获得10
5秒前
情怀应助十一采纳,获得10
5秒前
烟花应助无奈狗采纳,获得10
5秒前
6秒前
鱼yu发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
默默寄松发布了新的文献求助50
8秒前
9秒前
wlscj应助辛禹采纳,获得20
9秒前
独钓寒江雪完成签到 ,获得积分10
9秒前
明理的以亦应助米其林采纳,获得30
10秒前
10秒前
11秒前
liwei发布了新的文献求助10
11秒前
白智妍发布了新的文献求助10
11秒前
天天发布了新的文献求助10
12秒前
12秒前
ding应助mym采纳,获得10
12秒前
di发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764