OL-Reg: Registration of Image and Sparse LiDAR Point Cloud with Object-Level Dense Correspondences

计算机视觉 点云 激光雷达 人工智能 计算机科学 图像配准 对象(语法) 云计算 图像(数学) 遥感 地理 操作系统
作者
Pei An,Xuzhong Hu,Jianfu Ding,Jun Zhang,Jie Ma,You Yang,Qiong Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7523-7536 被引量:2
标识
DOI:10.1109/tcsvt.2024.3374723
摘要

Image and point cloud registration (2D-3D registration) is an essential prerequisite for multi-modal feature fusion. However, due to the significant feature difference of point cloud and image, it is challenging to establish 2D-3D correspondences. Targeting for the background of autonomous driving, we propose 2D-3D registration method with object-level correspondence (OL-Reg) in this paper. Object-level correspondence consists of object bounding box and object contour in 2D image and 3D space. The first step is to match 2D-3D objects. Due to sensor pose and field of view (FoV) difference, object shape and occlusion is different in image and point cloud, causing the difficulty of object matching. To solve this issue, we represent object as 3D bounding box, and design 2D-3D object matching with 3D box projection (Box-Proj) constraint. It aligns object 3D bounding box in image and point cloud. After that, the next step is to build 2D-3D correspondence from the matched objects. To extract correspondence from object with irregular shape, we notice the distance constraint of object surface and rays back-projected from object contour, and present projection based iterative closest point (Proj-ICP). Towards the stability of Proj-ICP, object-level regularization term is designed. Experiment is conducted in KITTI object and odometry dataset. With the pre-trained 3D object detector, results suggest that OL-Reg has the better performance than current approaches in tasks of re-localization and extrinsic calibration. And source code will be released soon 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuanhust完成签到,获得积分0
刚刚
Profeto应助张英俊采纳,获得10
刚刚
shiyin完成签到,获得积分10
1秒前
kajimi完成签到,获得积分10
1秒前
kndfsfmf完成签到,获得积分10
1秒前
omitoo发布了新的文献求助10
1秒前
群山完成签到 ,获得积分10
1秒前
1秒前
jfeng完成签到,获得积分10
2秒前
梅TiAmo完成签到,获得积分10
2秒前
YZ完成签到,获得积分10
3秒前
3秒前
天地一体完成签到,获得积分10
3秒前
Orange应助无辜秋珊采纳,获得10
3秒前
mirrovo完成签到 ,获得积分10
4秒前
落后千雁完成签到,获得积分10
6秒前
Ava应助dongdong采纳,获得10
6秒前
小巧的问旋完成签到,获得积分10
7秒前
zbx发布了新的文献求助10
7秒前
7秒前
夏下下完成签到 ,获得积分10
8秒前
怡然的代玉完成签到,获得积分10
8秒前
Tristan完成签到 ,获得积分10
8秒前
8秒前
薛wen晶完成签到 ,获得积分10
8秒前
夜宵应助阿辉采纳,获得10
9秒前
香菜完成签到,获得积分10
9秒前
9秒前
Sandro完成签到,获得积分10
9秒前
smottom应助典雅的土豆采纳,获得10
10秒前
渴望者完成签到,获得积分10
10秒前
N_wh完成签到,获得积分10
11秒前
粽子完成签到,获得积分10
12秒前
执着夏岚完成签到 ,获得积分10
12秒前
hhyy发布了新的文献求助10
13秒前
蛋挞好好吃完成签到,获得积分10
13秒前
linjunqi发布了新的文献求助10
13秒前
13秒前
阿六完成签到,获得积分10
14秒前
doudou完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301