OL-Reg: Registration of Image and Sparse LiDAR Point Cloud with Object-Level Dense Correspondences

计算机视觉 点云 激光雷达 人工智能 计算机科学 图像配准 对象(语法) 云计算 图像(数学) 遥感 地理 操作系统
作者
Pei An,Xuzhong Hu,Jianfu Ding,Jun Zhang,Jie Ma,You Yang,Qiong Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7523-7536 被引量:4
标识
DOI:10.1109/tcsvt.2024.3374723
摘要

Image and point cloud registration (2D-3D registration) is an essential prerequisite for multi-modal feature fusion. However, due to the significant feature difference of point cloud and image, it is challenging to establish 2D-3D correspondences. Targeting for the background of autonomous driving, we propose 2D-3D registration method with object-level correspondence (OL-Reg) in this paper. Object-level correspondence consists of object bounding box and object contour in 2D image and 3D space. The first step is to match 2D-3D objects. Due to sensor pose and field of view (FoV) difference, object shape and occlusion is different in image and point cloud, causing the difficulty of object matching. To solve this issue, we represent object as 3D bounding box, and design 2D-3D object matching with 3D box projection (Box-Proj) constraint. It aligns object 3D bounding box in image and point cloud. After that, the next step is to build 2D-3D correspondence from the matched objects. To extract correspondence from object with irregular shape, we notice the distance constraint of object surface and rays back-projected from object contour, and present projection based iterative closest point (Proj-ICP). Towards the stability of Proj-ICP, object-level regularization term is designed. Experiment is conducted in KITTI object and odometry dataset. With the pre-trained 3D object detector, results suggest that OL-Reg has the better performance than current approaches in tasks of re-localization and extrinsic calibration. And source code will be released soon 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助燕天与采纳,获得10
刚刚
无情的保温杯完成签到,获得积分10
1秒前
SamYang发布了新的文献求助10
1秒前
啊啊啊啊完成签到,获得积分10
1秒前
lll发布了新的文献求助10
1秒前
2秒前
deepsuck发布了新的文献求助10
2秒前
4秒前
wasb131关注了科研通微信公众号
4秒前
4秒前
米亚完成签到 ,获得积分10
4秒前
传奇3应助是莉莉娅采纳,获得10
4秒前
啊啊啊啊发布了新的文献求助30
5秒前
6秒前
zxy发布了新的文献求助10
6秒前
友好谷蓝发布了新的文献求助10
6秒前
wxy发布了新的文献求助10
6秒前
李爱国应助小西采纳,获得10
8秒前
慕青应助HM采纳,获得10
8秒前
8秒前
wggggggy关注了科研通微信公众号
8秒前
小杭杭弟完成签到,获得积分10
8秒前
传奇3应助潮汐采纳,获得10
9秒前
9秒前
9秒前
sunshine发布了新的文献求助10
9秒前
9秒前
dddd完成签到,获得积分10
10秒前
10秒前
何必在乎发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
酷炫翠柏发布了新的文献求助10
13秒前
13秒前
烟花应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621