Particle dispersion for indoor air quality control considering air change approach: A novel accelerated CFD-DNN prediction

气流 计算流体力学 人工神经网络 色散(光学) 通风(建筑) 模拟 计算机科学 人工智能 工程类 航空航天工程 物理 机械工程 光学
作者
Hong Yee Kek,Adib Bazgir,Huiyi Tan,Chew Tin Lee,Taehoon Hong,Mohd Hafiz Dzarfan Othman,Yee Van Fan,Mohamad Nur Hidayat Mat,Kun Zhang,Keng Yinn Wong
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:306: 113938-113938 被引量:15
标识
DOI:10.1016/j.enbuild.2024.113938
摘要

Computational Fluid Dynamics (CFD) is a well-established tool to study fluid dynamics and particle movement, while Artificial Neural Network (ANN) models offer machine learning capabilities to accelerate indoor airflow predictions, but they still maintain a reasonable level of accuracy for prediction purposes. This study pioneers the integration of Deep Neural Network (DNN) models into indoor airflow dynamics, aiming to provide an accurate and accelerated prediction efficiency. The objective is to train two DNN models (classical and modified DNN models) to capture the complex relationships between ventilation rate, airflow patterns, and particle dispersion characteristics within buildings. Using a dataset generated from CFD simulations encompassing various air change rates, the trained modified DNN model significantly enhances prediction efficiency in term of the computational cost by 67 % reduction of CFD computational time (1 h to 20 min) while also resulting in very similar accuracy compared to the CFD outputs. The R2 values of classical and modified DNN models (plane 1) at air flow rate equals to 4 ach are 0.6867 and 0.9567 in term of the DPM distribution, respectively. The similar pattern is observed as the accuracy of modified DNN is higher than the classical DNN for other air flow rates in terms of the DPM and velocity distributions. Accordingly, the number of prediction errors is significantly decreased as the model alters from the classical DNN to modified DNN model. The significance of this research lies in its potential to enhance the efficiency of assessing particle dispersion, allowing for the more efficient design of targeted ventilation strategies and indoor air quality control measures tailored to diverse pollutant sources emitted from humans. Integrating DNN and CFD in assessing particle dispersion characteristics is promising for improving the understanding of indoor air dynamics and facilitating data-driven decision-making for ensuring healthier and safer indoor environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助抹茶肥肠采纳,获得10
刚刚
精明凝海发布了新的文献求助10
刚刚
略略略完成签到,获得积分10
2秒前
xiaoyi发布了新的文献求助10
3秒前
mmmmm完成签到,获得积分10
3秒前
CodeCraft应助科研专家采纳,获得10
4秒前
7秒前
ccrr完成签到 ,获得积分10
7秒前
KinKrit发布了新的文献求助10
8秒前
精明凝海完成签到,获得积分10
10秒前
zcl完成签到,获得积分10
10秒前
163发布了新的文献求助10
11秒前
chestnut灬完成签到 ,获得积分10
12秒前
nenoaowu发布了新的文献求助10
13秒前
Jane完成签到,获得积分10
13秒前
小二郎应助xiaoyi采纳,获得10
14秒前
哈哈完成签到 ,获得积分10
15秒前
52Hz完成签到,获得积分10
16秒前
17秒前
benyu应助祎个耀学生采纳,获得10
18秒前
FashionBoy应助是你的雨采纳,获得10
19秒前
21秒前
163完成签到,获得积分10
22秒前
痴情的明辉完成签到 ,获得积分10
22秒前
22秒前
循环发布了新的文献求助10
23秒前
pny关闭了pny文献求助
25秒前
JOKER发布了新的文献求助10
26秒前
26秒前
马儿饿了要吃草完成签到,获得积分10
26秒前
psm发布了新的文献求助20
27秒前
pny关闭了pny文献求助
27秒前
29秒前
pny关闭了pny文献求助
30秒前
活泼苑博发布了新的文献求助10
32秒前
科研通AI5应助循环采纳,获得10
32秒前
33秒前
33秒前
pny关闭了pny文献求助
34秒前
大个应助Tong采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775571
求助须知:如何正确求助?哪些是违规求助? 3321201
关于积分的说明 10203945
捐赠科研通 3036025
什么是DOI,文献DOI怎么找? 1665907
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766