RSAM: Byzantine-Robust and Secure Model Aggregation in Federated Learning for Internet of Vehicles using Private Approximate Median

计算机科学 稳健性(进化) 互联网 计算机网络 块(置换群论) 数据聚合器 计算机安全 分布式计算 理论计算机科学 人工智能 无线传感器网络 万维网 数学 生物化学 化学 几何学 基因
作者
Yuanyuan He,Peizhi Li,Jianbing Ni,Xianjun Deng,Hongwei Lu,Jie Zhang,Laurence T. Yang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (5): 6714-6726
标识
DOI:10.1109/tvt.2023.3341637
摘要

In Internet-of-Vehicles (IoVs), Federated Learning (FL) is increasingly used by smart vehicles to process various sensing data. FL is a collaborative learning approach that enables vehicles to train a shared machine learning (ML) model by exchanging their local models instead of their sensitive training data in a distributed manner. Secure aggregation, as a privacy primitive for FL, aims to further protect the local models.c However, existing secure aggregation methods for FL in IoVs mostly suffer from poor security against Byzantine attacks, e.g., malicious vehicles submit fake local models, which are common in IoVs and greatly degrade the accuracy of the final shared model without being detected. In this paper, we propose a new secure and efficient aggregation approach, RSAM, for resisting Byzantine attacks FL in IoVs. RSAM first securely calculates an approximate median of local models of the distributed vehicles via the divide-and-conquer strategy as the aggregation model in each training round, providing the strong Byzantine robustness that is similar to the real median (a proven robust rank-based statistic) does, where median means the coordinate-wise median. Furthermore, RSAM is a single-server secure aggregation protocol that protects the vehicles' local models and training data against inside conspiracy attacks based on zero-sharing. Finally, RSAM is efficient for vehicles in IoVs, since RSAM transforms the sorting operation over the encrypted data to a small number of comparison operations over plain texts and vector-addition operations over ciphertexts, and the main building block relies on fast symmetric-key primitives. The correctness, Byzantine resilience, and privacy protection of RSAM are analyzed, and extensive experiments demonstrate its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1234完成签到 ,获得积分10
1秒前
向觅夏完成签到,获得积分10
2秒前
李瑞瑞发布了新的文献求助10
2秒前
3秒前
3秒前
Akim应助zheng采纳,获得10
4秒前
Lucas应助爱小采纳,获得10
4秒前
5秒前
bkagyin应助缓慢芙采纳,获得10
5秒前
李嘉琪发布了新的文献求助30
6秒前
7秒前
super chan发布了新的文献求助10
7秒前
Grey发布了新的文献求助10
7秒前
vidi发布了新的文献求助10
8秒前
爆米花应助怡然的冰露采纳,获得10
8秒前
险胜应助猛磕CO2的小生采纳,获得10
8秒前
9秒前
无花果应助ido采纳,获得10
10秒前
之组长了完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
14秒前
香蕉你个不拿拿完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
丰知然应助你不刷牙采纳,获得10
18秒前
科研通AI2S应助你不刷牙采纳,获得10
18秒前
呆萌幼晴应助你不刷牙采纳,获得10
18秒前
张达发布了新的文献求助10
18秒前
南宋摸鱼的果脯完成签到 ,获得积分10
19秒前
白华苍松发布了新的文献求助10
19秒前
南风不知意完成签到 ,获得积分10
19秒前
19秒前
joasuka发布了新的文献求助10
19秒前
猛磕CO2的小生给猛磕CO2的小生的求助进行了留言
19秒前
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306734
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497350
捐赠科研通 2614699
什么是DOI,文献DOI怎么找? 1428415
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259