RSAM: Byzantine-Robust and Secure Model Aggregation in Federated Learning for Internet of Vehicles using Private Approximate Median

计算机科学 稳健性(进化) 互联网 计算机网络 块(置换群论) 数据聚合器 计算机安全 分布式计算 理论计算机科学 人工智能 无线传感器网络 万维网 数学 几何学 基因 生物化学 化学
作者
Yuanyuan He,Peizhi Li,Jianbing Ni,Xianjun Deng,Hongwei Lu,Jie Zhang,Laurence T. Yang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (5): 6714-6726
标识
DOI:10.1109/tvt.2023.3341637
摘要

In Internet-of-Vehicles (IoVs), Federated Learning (FL) is increasingly used by smart vehicles to process various sensing data. FL is a collaborative learning approach that enables vehicles to train a shared machine learning (ML) model by exchanging their local models instead of their sensitive training data in a distributed manner. Secure aggregation, as a privacy primitive for FL, aims to further protect the local models.c However, existing secure aggregation methods for FL in IoVs mostly suffer from poor security against Byzantine attacks, e.g., malicious vehicles submit fake local models, which are common in IoVs and greatly degrade the accuracy of the final shared model without being detected. In this paper, we propose a new secure and efficient aggregation approach, RSAM, for resisting Byzantine attacks FL in IoVs. RSAM first securely calculates an approximate median of local models of the distributed vehicles via the divide-and-conquer strategy as the aggregation model in each training round, providing the strong Byzantine robustness that is similar to the real median (a proven robust rank-based statistic) does, where median means the coordinate-wise median. Furthermore, RSAM is a single-server secure aggregation protocol that protects the vehicles' local models and training data against inside conspiracy attacks based on zero-sharing. Finally, RSAM is efficient for vehicles in IoVs, since RSAM transforms the sorting operation over the encrypted data to a small number of comparison operations over plain texts and vector-addition operations over ciphertexts, and the main building block relies on fast symmetric-key primitives. The correctness, Byzantine resilience, and privacy protection of RSAM are analyzed, and extensive experiments demonstrate its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
菠萝派发布了新的文献求助10
2秒前
华仔应助tian采纳,获得10
2秒前
深情安青应助彩色映雁采纳,获得10
2秒前
高兴的问儿完成签到 ,获得积分10
2秒前
Winne完成签到,获得积分10
2秒前
5秒前
肖赵峰完成签到,获得积分10
5秒前
擦书完成签到,获得积分10
5秒前
hyman1218发布了新的文献求助20
8秒前
8秒前
兔子完成签到,获得积分10
9秒前
ZHY完成签到,获得积分10
9秒前
游标卡尺发布了新的文献求助10
10秒前
在水一方应助mbxjsy采纳,获得10
13秒前
笑一笑发布了新的文献求助10
13秒前
宇文安寒完成签到,获得积分10
16秒前
dp发布了新的文献求助10
18秒前
19秒前
orixero应助高高的不悔采纳,获得10
21秒前
23秒前
魔音甜菜发布了新的文献求助10
24秒前
游标卡尺完成签到,获得积分10
24秒前
zhihan完成签到,获得积分10
24秒前
mbxjsy发布了新的文献求助10
25秒前
30秒前
31秒前
淡淡博完成签到 ,获得积分10
32秒前
Frrrrry完成签到,获得积分10
32秒前
35秒前
ll发布了新的文献求助30
37秒前
机智洋葱发布了新的文献求助10
37秒前
38秒前
小彤完成签到 ,获得积分10
39秒前
lijikj完成签到 ,获得积分10
40秒前
不行就相比较完成签到,获得积分20
40秒前
42秒前
42秒前
汉堡包应助棠堂采纳,获得10
43秒前
忍蛙发布了新的文献求助20
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999076
求助须知:如何正确求助?哪些是违规求助? 3538508
关于积分的说明 11274412
捐赠科研通 3277402
什么是DOI,文献DOI怎么找? 1807554
邀请新用户注册赠送积分活动 883917
科研通“疑难数据库(出版商)”最低求助积分说明 810080