Utilizing Data Mining for the Synthesis of Functionalized Tungsten Oxide with Enhanced Oxygen Vacancies for Highly Sensitive Detection of Triethylamine

三乙胺 材料科学 纳米棒 氧化物 选择性 纳米技术 灵敏度(控制系统) 催化作用 有机化学 电子工程 化学 工程类 冶金
作者
Shaofeng Shao,Li Yan,Lei Zhang,Jun Zhang,Zuo‐Xi Li,Hyoun Woo Kim,Sang Sub Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.3c16021
摘要

The optimal combination of metal ions and ligands for sensing materials was estimated by using a data-driven model developed in this research. This model utilized advanced computational algorithms and a data set of 100,000 literature pieces. The semiconductor metal oxide (SMO) that is most suitable for detecting triethylamine (TEA) with the highest probability was identified by using the Word2vec model, which employed the maximum likelihood method. The loss function of the probability distribution was minimized in this process. Based on the analysis, a novel hierarchical nanostructured tungsten-based coordination with 2,5-dihydroxyterephthalic acid (W-DHTA) was synthesized. This synthesis involved a postsynthetic hydrothermal treatment (psHT) and the self-assembly of tungsten oxide nanorods. The tungsten oxide nanorods had a significant number of oxygen vacancies. Various techniques were used to characterize the synthesized material, and its sensing performance toward volatile organic compound (VOC) gases was evaluated. The results showed that the functionalized tungsten oxide exhibited an exceptionally high sensitivity and selectivity toward TEA gas. Even in a highly disturbed environment, the detection limit for TEA gas was as low as 40 parts per billion (ppb). Furthermore, our findings suggest that the control of oxygen vacancies in sensing materials plays a crucial role in enhancing the sensitivity and selectivity of gas sensors. This approach was supported by the utilization of density functional theory (DFT) computation and machine learning algorithms to assess and analyze the performance of sensor devices, providing a highly efficient and universally applicable research methodology for the development and design of next-generation functional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贰叁发布了新的文献求助10
刚刚
皛白发布了新的文献求助10
2秒前
2秒前
2秒前
蟹老板发布了新的文献求助10
2秒前
义气的惜海完成签到,获得积分10
2秒前
鳗鱼发带完成签到,获得积分10
2秒前
遇鲸还潮发布了新的文献求助10
4秒前
NexusExplorer应助爱听歌笑寒采纳,获得10
4秒前
留胡子的凡完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
bleem完成签到,获得积分10
6秒前
开心栾应助fqf采纳,获得20
6秒前
HelingXu发布了新的文献求助20
6秒前
wangyun完成签到,获得积分10
7秒前
eli完成签到,获得积分10
7秒前
小菜完成签到 ,获得积分10
7秒前
Starry发布了新的文献求助10
8秒前
8秒前
animages发布了新的文献求助10
8秒前
第二人生完成签到 ,获得积分10
9秒前
888完成签到,获得积分10
9秒前
桐桐应助Clover04采纳,获得10
9秒前
10秒前
武玉坤完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助bei采纳,获得10
12秒前
12秒前
12秒前
gaigai完成签到,获得积分10
13秒前
阿花阿花完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助30
14秒前
硕大的眼发布了新的文献求助10
14秒前
Islet发布了新的文献求助10
14秒前
14秒前
15秒前
小老板的手抓饼完成签到,获得积分10
15秒前
闪闪芷波发布了新的文献求助10
16秒前
蟹老板完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771