Multi-modal learning for inpatient length of stay prediction

计算机科学 情态动词 人工智能 机器学习 化学 高分子化学
作者
Junde Chen,Yuxin Wen,Michael Pokojovy,Tzu-Liang Tseng,Peter McCaffrey,Alexander H. Vo,Eric Walser,Scott T. Moen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108121-108121 被引量:11
标识
DOI:10.1016/j.compbiomed.2024.108121
摘要

Predicting inpatient length of stay (LoS) is important for hospitals aiming to improve service efficiency and enhance management capabilities. Patient medical records are strongly associated with LoS. However, due to diverse modalities, heterogeneity, and complexity of data, it becomes challenging to effectively leverage these heterogeneous data to put forth a predictive model that can accurately predict LoS. To address the challenge, this study aims to establish a novel data-fusion model, termed as DF-Mdl, to integrate heterogeneous clinical data for predicting the LoS of inpatients between hospital discharge and admission. Multi-modal data such as demographic data, clinical notes, laboratory test results, and medical images are utilized in our proposed methodology with individual "basic" sub-models separately applied to each different data modality. Specifically, a convolutional neural network (CNN) model, which we termed CRXMDL, is designed for chest X-ray (CXR) image data, two long short-term memory networks are used to extract features from long text data, and a novel attention-embedded 1D convolutional neural network is developed to extract useful information from numerical data. Finally, these basic models are integrated to form a new data-fusion model (DF-Mdl) for inpatient LoS prediction. The proposed method attains the best R2 and EVAR values of 0.6039 and 0.6042 among competitors for the LoS prediction on the Medical Information Mart for Intensive Care (MIMIC)-IV test dataset. Empirical evidence suggests better performance compared with other state-of-the-art (SOTA) methods, which demonstrates the effectiveness and feasibility of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
she完成签到,获得积分20
2秒前
剑舞红颜笑完成签到 ,获得积分10
3秒前
keikei发布了新的文献求助10
4秒前
趙途嘵生完成签到,获得积分10
9秒前
cc完成签到 ,获得积分10
11秒前
14秒前
蒙豆儿完成签到,获得积分10
16秒前
17秒前
小二郎应助清晰采纳,获得10
17秒前
蒙豆儿发布了新的文献求助10
18秒前
寒冷谷梦关注了科研通微信公众号
19秒前
到江南散步完成签到,获得积分10
20秒前
22秒前
iwaking完成签到,获得积分10
22秒前
24秒前
25秒前
888关闭了888文献求助
26秒前
玛卡巴卡完成签到 ,获得积分10
27秒前
27秒前
兔兔要睡觉完成签到,获得积分10
28秒前
脑洞疼应助紫罗风韵采纳,获得10
29秒前
Eason_C完成签到 ,获得积分10
29秒前
慎独发布了新的文献求助10
30秒前
吐金纳发布了新的文献求助10
30秒前
兔兔不睡觉完成签到 ,获得积分10
33秒前
慎独完成签到,获得积分10
35秒前
寒冷谷梦发布了新的文献求助10
37秒前
吐金纳完成签到,获得积分20
38秒前
41秒前
42秒前
万能图书馆应助MrH采纳,获得10
42秒前
45秒前
Jasper应助吐金纳采纳,获得10
45秒前
祁琪爱喝酸奶完成签到,获得积分20
45秒前
45秒前
清晰发布了新的文献求助10
45秒前
46秒前
48秒前
小樁发布了新的文献求助10
49秒前
yangminmin发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877742
求助须知:如何正确求助?哪些是违规求助? 6545170
关于积分的说明 15682078
捐赠科研通 4996405
什么是DOI,文献DOI怎么找? 2692689
邀请新用户注册赠送积分活动 1634723
关于科研通互助平台的介绍 1592383