An antifouling coating that enables electrochemical biosensing of MecA gene in complex samples

生物污染 生物传感器 纳米技术 检出限 化学 材料科学 色谱法 生物化学
作者
Xiaoyu Zhu,Yongxin Zhai,Xingao Qin,Yihui Ding,Ying Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:483: 148975-148975 被引量:5
标识
DOI:10.1016/j.cej.2024.148975
摘要

As an important emerging pollutant, antibiotic resistance genes (ARGs) monitoring is crucial to protect the ecological environment and public health, but its accurate detection is still a major challenge in complex environment samples. In this study, a robust antifouling electrochemical DNA biosensor (E-DNA biosensor) was proposed for highly sensitive and selective detection of the mecA gene in complex water samples. The antifouling coating of electrode consisted of a branched-shaped zwitterionic peptide and gold nanoparticles (CPEK-AuNPs). And, the PPPP linker of peptide between the anchoring and antifouling domains adopted a polyproline helix conformation. The CPEK-AuNPs-modified electrode interface with stable hydration layer prevented non-specific interactions while enhancing electron transfer to the electrode surface, resulting in high current response and outstanding antifouling performance. Coupled with synergistic isothermal strand displacement polymerase reaction (ISDPR), the proposed antifouling sensing strategy exhibited superb sensitivity for the mecA gene. The limit of detection (LOD) was as low as 16.67 fM (S/N = 3) in a broad linear range of 0.05–5000 pM, and a high specificity to resolve from even single base mismatch towards the complex water samples was obtained. Benefiting from the stable hydration layer, the as-prepared E-DNA biosensor preserved 91.8 % of the initial signal after 15 days of exposure in unprocessed wastewater samples. The excellent specificity, stability and reproducibility (RSD<3%) of mecA gene detection indicated that the proposed sensing strategy with antifouling performance can be a versatile tool for accurate quantitative analysis of ARGs in complex environment samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文章快快来完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
Cloud发布了新的文献求助20
2秒前
卫思风发布了新的文献求助30
3秒前
4秒前
4秒前
5秒前
搜集达人应助耶耶耶采纳,获得10
5秒前
卜念发布了新的文献求助10
5秒前
657完成签到 ,获得积分10
5秒前
orixero应助活泼采纳,获得10
5秒前
5秒前
小二郎应助shi hui采纳,获得10
5秒前
5秒前
无情元灵发布了新的文献求助10
6秒前
6秒前
qq完成签到,获得积分20
6秒前
慕青应助要减肥金针菇采纳,获得10
6秒前
浮游应助东东呀采纳,获得10
6秒前
ojhhosh发布了新的文献求助10
6秒前
李林鑫完成签到 ,获得积分10
6秒前
Lee完成签到,获得积分10
7秒前
单纯的幻竹完成签到,获得积分10
7秒前
Owen应助木巳采纳,获得10
7秒前
在水一方应助zc采纳,获得10
7秒前
噗宝凹发布了新的文献求助10
7秒前
Qxx完成签到 ,获得积分10
8秒前
赘婿应助顺心绮兰采纳,获得10
8秒前
STH发布了新的文献求助10
8秒前
8秒前
Lucas应助zskyworth采纳,获得10
8秒前
坦率寻雪发布了新的文献求助10
9秒前
科研通AI2S应助my采纳,获得10
9秒前
浮游应助三水采纳,获得10
9秒前
恰饭睡觉发布了新的文献求助10
10秒前
冀君赏完成签到,获得积分10
10秒前
我到了啊完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105