Spectroscopy and Chemometrics for Conformity Analysis of e-Liquids: Illegal Additive Detection and Nicotine Characterization

化学计量学 尼古丁 化学 色谱法 偏最小二乘回归 心理学 计算机科学 机器学习 神经科学
作者
Zeb Akhtar,Sophia Barhdadi,Kris De Braekeleer,Cédric Delporte,Erwin Adams,Eric Deconinck
出处
期刊:Chemosensors [Multidisciplinary Digital Publishing Institute]
卷期号:12 (1): 9-9 被引量:3
标识
DOI:10.3390/chemosensors12010009
摘要

Vaping electronic cigarettes (e-cigarettes) has become a popular alternative to smoking tobacco. When an e-cigarette is activated, a liquid is vaporized by heating, producing an aerosol that users inhale. While e-cigarettes are marketed as less harmful than traditional cigarettes, there are ongoing concerns about their long-term health effects, including potential lung damage. Therefore, it is essential to closely monitor and study the composition of e-liquids. E-liquids typically consist of propylene glycol, glycerin, flavorings and nicotine, though there have been reports of non-compliant nicotine concentrations and the presence of illegal additives. This study explored spectroscopic techniques to examine the conformity of nicotine labeling and detect the presence of the not-allowed additives: the caffeine, taurine, vitamin E and cannabidiol (CBD) in e-liquids. A total of 236 e-liquid samples were carefully selected for analysis. Chemometric analysis was applied to the collected data, which included mid-infrared (MIR) and near-infrared (NIR) spectra. Supervised modeling approaches such as partial least squares-discriminant analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA) were employed to classify the samples, based on the presence of nicotine and the targeted additives. This study demonstrates the efficacy of MIR and NIR spectroscopic techniques in conjunction with chemometric methods (SIMCA and PLS-DA) for detecting specific molecules in e-liquids. MIR with autoscaling data preprocessing and PLS-DA achieved 100% classification rates for CBD and vitamin E, while NIR with the same approach achieved 100% for CBD and taurine. Overall, MIR combined with PLS-DA yielded the best classification across all targeted molecules, suggesting its preference as a singular technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jan完成签到,获得积分10
刚刚
2秒前
3秒前
3秒前
科目三应助南方姑娘采纳,获得10
3秒前
龚晓博发布了新的文献求助10
4秒前
绿泡泡发布了新的文献求助10
6秒前
6秒前
帅帅中带点小坏完成签到,获得积分20
6秒前
放手一搏完成签到,获得积分10
7秒前
7秒前
7秒前
scxl2000发布了新的文献求助10
8秒前
ddl发布了新的文献求助30
9秒前
三问白完成签到,获得积分10
9秒前
Nik- KC完成签到 ,获得积分10
9秒前
丰富无色完成签到,获得积分10
9秒前
我是老大应助WD采纳,获得10
9秒前
机灵笑萍完成签到,获得积分10
9秒前
元66666完成签到 ,获得积分10
10秒前
汉堡包应助瓦猫采纳,获得10
11秒前
tszjw168发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
彩虹天堂发布了新的文献求助10
14秒前
优美巧曼完成签到 ,获得积分10
16秒前
16秒前
小韦完成签到,获得积分10
17秒前
WD发布了新的文献求助10
17秒前
mysci完成签到,获得积分10
18秒前
wwe发布了新的文献求助10
18秒前
lucky完成签到 ,获得积分10
19秒前
20秒前
916应助落后幼晴采纳,获得10
21秒前
21秒前
22秒前
口十完成签到 ,获得积分10
24秒前
25秒前
Andy_Cheung应助自由的含双采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701187
求助须知:如何正确求助?哪些是违规求助? 3251544
关于积分的说明 9874989
捐赠科研通 2963549
什么是DOI,文献DOI怎么找? 1625157
邀请新用户注册赠送积分活动 769822
科研通“疑难数据库(出版商)”最低求助积分说明 742564