已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-Time 2D/3D Registration via CNN Regression and Centroid Alignment

质心 人工智能 图像配准 计算机科学 推论 分割 深度学习 回归 规范化(社会学) 转化(遗传学) 残余物 姿势 模式识别(心理学) 数学 图像(数学) 算法 统计 社会学 基因 化学 生物化学 人类学
作者
De-Xing Huang,Xiao-Hu Zhou,Xiao‐Liang Xie,Shi-Qi Liu,Zhen-Qiu Feng,Zeng‐Guang Hou,Ning Ma,Long Yan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tase.2023.3345927
摘要

Registration of pre-operative 3D volumes and intra-operative 2D images is critical for neurological interventions. In various 2D/3D registration tasks, deep learning-based approaches have become popular and achieved tremendous success. However, due to vast space of transformation parameters, estimation errors are significant in these approaches. To tackle above issues, a novel learning-based framework for 2D/3D registration is proposed, consisting of CNN regression and centroid alignment. The former introduces a residual regression network (Res-RegNet) to preliminarily estimate transformation parameters. To further reduce estimation errors, the latter utilizes target vessel centroids to refine projected images. The proposed framework is individually trained and evaluated on three patients, reaching mean Dice of 76.69%, 78.51%, and 85.39%, respectively, all outperforming baseline methods. Extensive ablation studies demonstrate centroid alignment can significantly improve registration performance. As a normalization layer in Res-RegNet, SPADE can modulate activations using binarized inputs through a spatially-adaptive, learned transformation. Semantic information of inputs is preserved to learn better representations for parameter estimation. Moreover, the inference rate of our framework is about 21 FPS combined with the state-of-the-art segmentation model, significantly surpassing real-time requirements (6 $\sim$ 12 FPS) in clinical practice. These promising results indicate the potential of the framework to facilitate various 2D/3D registration tasks. Note to Practitioners —This paper was motivated by the problem of image-guided neurological interventions. Existing 2D/3D registration methods suffer from 1) long iteration times, which are difficult to meet real-time clinical necessities, or 2) significant parameter estimation errors, leading to poor registration accuracies. Therefore, this paper suggests a new registration framework, combining with CNN regression to give predictions of transformation parameters via a single forward propagation, and centroid alignment to reduce estimation errors by translation transformation. The framework is trained and tested on three patients separately and achieves state-of-the-art performance, demonstrating its superiority. Furthermore, the proposed framework is a learning-based method that is adaptable to various image modalities. Therefore, it has latent capacities to be integrated into surgical navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
老鐵完成签到,获得积分20
3秒前
4秒前
5秒前
不懂发布了新的文献求助10
5秒前
Lucas应助唠叨的傲薇采纳,获得10
5秒前
笑面客发布了新的文献求助10
6秒前
goo发布了新的文献求助10
6秒前
可爱的函函应助Morale采纳,获得10
7秒前
852发布了新的文献求助20
8秒前
领导范儿应助俞若枫采纳,获得10
9秒前
10秒前
11秒前
11秒前
满意含烟关注了科研通微信公众号
12秒前
不懂完成签到,获得积分10
13秒前
14秒前
15秒前
zoromoon发布了新的文献求助10
15秒前
17秒前
feng完成签到,获得积分10
17秒前
19秒前
20秒前
老鐵关注了科研通微信公众号
20秒前
科研通AI2S应助haoduoyu采纳,获得10
22秒前
22秒前
俞若枫发布了新的文献求助10
23秒前
24秒前
25秒前
Vision820发布了新的文献求助150
25秒前
25秒前
thirty发布了新的文献求助10
26秒前
28秒前
goo完成签到,获得积分20
28秒前
29秒前
hh发布了新的文献求助10
29秒前
tdtk发布了新的文献求助10
29秒前
坚定的泥猴桃完成签到 ,获得积分10
30秒前
浪者漫心发布了新的文献求助10
30秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763324
求助须知:如何正确求助?哪些是违规求助? 3307878
关于积分的说明 10141846
捐赠科研通 3022865
什么是DOI,文献DOI怎么找? 1659381
邀请新用户注册赠送积分活动 792605
科研通“疑难数据库(出版商)”最低求助积分说明 755005