BPSegSys: A Brachial Plexus Nerve Trunk Segmentation System Using Deep Learning

臂丛神经 医学 分割 神经阻滞 解剖 计算机科学 麻醉 人工智能
作者
Yu Wang,Binbin Zhu,Lingsi Kong,Jianlin Wang,Bin Gao,Jianhua Wang,Dingcheng Tian,Yu‐Dong Yao
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:50 (3): 374-383 被引量:1
标识
DOI:10.1016/j.ultrasmedbio.2023.11.009
摘要

Objective Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can be used to observe the target nerve and its surrounding structures, the puncture needle's advancement and local anesthetics spread in real time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. Methods We established a public data set containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produced the BP segmentation ground truth and labeled brachial plexus trunks. We designed a brachial plexus segmentation system (BPSegSys) based on deep learning. Results BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluated BPSegSys performance in terms of intersection-over-union (IoU). Considering three data set groups in our established public data set, the IoUs of BPSegSys were 0.5350, 0.4763 and 0.5043, respectively, which exceed the IoUs 0.5205, 0.4704 and 0.4979 of experienced doctors. In addition, we determined that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value. Conclusion We establish a data set for brachial plexus trunk identification and designed a BPSegSys to identify the brachial plexus trunks. BPSegSys achieves the doctor-level identification of the brachial plexus trunks and improves the accuracy and efficiency of doctors' identification of the brachial plexus trunks. Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can be used to observe the target nerve and its surrounding structures, the puncture needle's advancement and local anesthetics spread in real time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. We established a public data set containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produced the BP segmentation ground truth and labeled brachial plexus trunks. We designed a brachial plexus segmentation system (BPSegSys) based on deep learning. BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluated BPSegSys performance in terms of intersection-over-union (IoU). Considering three data set groups in our established public data set, the IoUs of BPSegSys were 0.5350, 0.4763 and 0.5043, respectively, which exceed the IoUs 0.5205, 0.4704 and 0.4979 of experienced doctors. In addition, we determined that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value. We establish a data set for brachial plexus trunk identification and designed a BPSegSys to identify the brachial plexus trunks. BPSegSys achieves the doctor-level identification of the brachial plexus trunks and improves the accuracy and efficiency of doctors' identification of the brachial plexus trunks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
安详砖家完成签到 ,获得积分10
4秒前
FashionBoy应助清萍红檀采纳,获得10
4秒前
孤独半青发布了新的文献求助10
6秒前
wangruida完成签到,获得积分10
7秒前
24K纯帅完成签到,获得积分10
7秒前
8秒前
打打应助zz采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
青藤应助科研通管家采纳,获得30
10秒前
Ava应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
青藤应助科研通管家采纳,获得30
10秒前
11秒前
12秒前
Lucas应助ningning采纳,获得10
13秒前
科研通AI5应助清颜采纳,获得10
14秒前
14秒前
科研通AI2S应助yatou5651采纳,获得10
15秒前
15秒前
王婷静发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
腼腆的缘分完成签到,获得积分10
18秒前
18秒前
Q0发布了新的文献求助30
20秒前
20秒前
小六子发布了新的文献求助10
21秒前
轻风发布了新的文献求助10
21秒前
longlonglong完成签到,获得积分10
22秒前
自由绿柳完成签到,获得积分20
23秒前
清萍红檀发布了新的文献求助10
23秒前
24秒前
ztlooo发布了新的文献求助20
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands 1st Edition 1500
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772768
求助须知:如何正确求助?哪些是违规求助? 3318318
关于积分的说明 10189651
捐赠科研通 3033100
什么是DOI,文献DOI怎么找? 1664093
邀请新用户注册赠送积分活动 796089
科研通“疑难数据库(出版商)”最低求助积分说明 757245