BPSegSys: A Brachial Plexus Nerve Trunk Segmentation System Using Deep Learning

臂丛神经 医学 分割 神经阻滞 解剖 计算机科学 麻醉 人工智能
作者
Yu Wang,Binbin Zhu,Lingsi Kong,Jianlin Wang,Bin Gao,Jianhua Wang,Dingcheng Tian,Yudong Yao
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:50 (3): 374-383 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2023.11.009
摘要

Objective Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can be used to observe the target nerve and its surrounding structures, the puncture needle's advancement and local anesthetics spread in real time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. Methods We established a public data set containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produced the BP segmentation ground truth and labeled brachial plexus trunks. We designed a brachial plexus segmentation system (BPSegSys) based on deep learning. Results BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluated BPSegSys performance in terms of intersection-over-union (IoU). Considering three data set groups in our established public data set, the IoUs of BPSegSys were 0.5350, 0.4763 and 0.5043, respectively, which exceed the IoUs 0.5205, 0.4704 and 0.4979 of experienced doctors. In addition, we determined that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value. Conclusion We establish a data set for brachial plexus trunk identification and designed a BPSegSys to identify the brachial plexus trunks. BPSegSys achieves the doctor-level identification of the brachial plexus trunks and improves the accuracy and efficiency of doctors' identification of the brachial plexus trunks. Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can be used to observe the target nerve and its surrounding structures, the puncture needle's advancement and local anesthetics spread in real time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. We established a public data set containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produced the BP segmentation ground truth and labeled brachial plexus trunks. We designed a brachial plexus segmentation system (BPSegSys) based on deep learning. BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluated BPSegSys performance in terms of intersection-over-union (IoU). Considering three data set groups in our established public data set, the IoUs of BPSegSys were 0.5350, 0.4763 and 0.5043, respectively, which exceed the IoUs 0.5205, 0.4704 and 0.4979 of experienced doctors. In addition, we determined that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value. We establish a data set for brachial plexus trunk identification and designed a BPSegSys to identify the brachial plexus trunks. BPSegSys achieves the doctor-level identification of the brachial plexus trunks and improves the accuracy and efficiency of doctors' identification of the brachial plexus trunks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fsw发布了新的文献求助10
1秒前
1秒前
lujin完成签到,获得积分10
2秒前
Marciu33应助小王采纳,获得10
2秒前
特来骑发布了新的文献求助10
2秒前
张凌志发布了新的文献求助10
3秒前
3秒前
tczw667完成签到,获得积分10
4秒前
4秒前
勤恳慕蕊发布了新的文献求助20
4秒前
hqz发布了新的文献求助10
5秒前
tcmlida发布了新的文献求助10
6秒前
Yu发布了新的文献求助10
6秒前
warry完成签到 ,获得积分10
7秒前
luluyang完成签到,获得积分10
9秒前
Orange应助麦麦泰采纳,获得10
9秒前
9秒前
斯文败类应助喵喵采纳,获得10
10秒前
10秒前
隐形曼青应助kevin采纳,获得10
12秒前
Esther发布了新的文献求助10
12秒前
特来骑完成签到,获得积分10
12秒前
蜡笔小新完成签到 ,获得积分10
12秒前
高梦祥完成签到,获得积分10
13秒前
领导范儿应助fsw采纳,获得10
13秒前
Akim应助早日毕业脱离苦海采纳,获得10
13秒前
13秒前
14秒前
14秒前
华子的五A替身完成签到,获得积分10
14秒前
刘保彤发布了新的文献求助10
14秒前
14秒前
14秒前
拼搏从灵完成签到,获得积分10
15秒前
15秒前
卡尔发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5017460
求助须知:如何正确求助?哪些是违规求助? 4257073
关于积分的说明 13267567
捐赠科研通 4061370
什么是DOI,文献DOI怎么找? 2221225
邀请新用户注册赠送积分活动 1230555
关于科研通互助平台的介绍 1153161