BPSegSys: A Brachial Plexus Nerve Trunk Segmentation System Using Deep Learning

臂丛神经 医学 分割 神经阻滞 解剖 计算机科学 麻醉 人工智能
作者
Yu Wang,Binbin Zhu,Lingsi Kong,Jianlin Wang,Bin Gao,Jianhua Wang,Dingcheng Tian,Yudong Yao
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:50 (3): 374-383 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2023.11.009
摘要

Objective Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can be used to observe the target nerve and its surrounding structures, the puncture needle's advancement and local anesthetics spread in real time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. Methods We established a public data set containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produced the BP segmentation ground truth and labeled brachial plexus trunks. We designed a brachial plexus segmentation system (BPSegSys) based on deep learning. Results BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluated BPSegSys performance in terms of intersection-over-union (IoU). Considering three data set groups in our established public data set, the IoUs of BPSegSys were 0.5350, 0.4763 and 0.5043, respectively, which exceed the IoUs 0.5205, 0.4704 and 0.4979 of experienced doctors. In addition, we determined that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value. Conclusion We establish a data set for brachial plexus trunk identification and designed a BPSegSys to identify the brachial plexus trunks. BPSegSys achieves the doctor-level identification of the brachial plexus trunks and improves the accuracy and efficiency of doctors' identification of the brachial plexus trunks. Ultrasound-guided nerve block anesthesia (UGNB) is a high-tech visual nerve block anesthesia method that can be used to observe the target nerve and its surrounding structures, the puncture needle's advancement and local anesthetics spread in real time. The key in UGNB is nerve identification. With the help of deep learning methods, the automatic identification or segmentation of nerves can be realized, assisting doctors in completing nerve block anesthesia accurately and efficiently. We established a public data set containing 320 ultrasound images of brachial plexus (BP). Three experienced doctors jointly produced the BP segmentation ground truth and labeled brachial plexus trunks. We designed a brachial plexus segmentation system (BPSegSys) based on deep learning. BPSegSys achieves experienced-doctor-level nerve identification performance in various experiments. We evaluated BPSegSys performance in terms of intersection-over-union (IoU). Considering three data set groups in our established public data set, the IoUs of BPSegSys were 0.5350, 0.4763 and 0.5043, respectively, which exceed the IoUs 0.5205, 0.4704 and 0.4979 of experienced doctors. In addition, we determined that BPSegSys can help doctors identify brachial plexus trunks more accurately, with IoU improvement up to 27%, which has significant clinical application value. We establish a data set for brachial plexus trunk identification and designed a BPSegSys to identify the brachial plexus trunks. BPSegSys achieves the doctor-level identification of the brachial plexus trunks and improves the accuracy and efficiency of doctors' identification of the brachial plexus trunks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奔波霸完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助郭晓琦采纳,获得10
1秒前
夙夙完成签到,获得积分10
2秒前
孙刚发布了新的文献求助10
2秒前
quhayley发布了新的文献求助30
2秒前
晚灯君发布了新的文献求助10
3秒前
demian发布了新的文献求助10
4秒前
4秒前
4秒前
Jasper应助hp571采纳,获得10
4秒前
4秒前
天天快乐应助李治海采纳,获得10
5秒前
可达燊完成签到,获得积分10
5秒前
今后应助小怪兽采纳,获得10
6秒前
小晟完成签到,获得积分10
6秒前
小鹿呀完成签到,获得积分10
6秒前
Connie完成签到,获得积分10
6秒前
uu发布了新的文献求助10
6秒前
一只鱼的故事完成签到,获得积分10
7秒前
流星完成签到,获得积分10
8秒前
liyizhe完成签到 ,获得积分10
8秒前
8秒前
徐风年完成签到,获得积分10
9秒前
猕猴桃发布了新的文献求助30
10秒前
10秒前
刘源发布了新的文献求助10
10秒前
11秒前
glanceofwind完成签到 ,获得积分10
11秒前
可达燊发布了新的文献求助50
11秒前
Akim应助kk采纳,获得10
11秒前
传奇3应助爱听歌的寄云采纳,获得10
12秒前
xW12123完成签到,获得积分10
12秒前
JamesPei应助三三采纳,获得10
12秒前
12秒前
12秒前
13秒前
hp571完成签到,获得积分10
14秒前
打击8完成签到 ,获得积分10
14秒前
baobao完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635